Page 117 - Introduction to Computational Fluid Dynamics
P. 117

P1: IWV
                           CB908/Date
                                                                                   May 25, 2005
            0521853265c04
                                                                                                11:7
                     96
                            Reaction 4  0 521 85326 5                          2D BOUNDARY LAYERS
                                                   1
                                             CO +    O 2 → CO 2 , H 4 = 10.1 MJ/kg of CO,
                                                   2
                                                                           −1
                                        k 4 = 2.24 × 10 12  exp (−20,137/T )s ,
                                                               0.25        0.5

                                              1.75        ω O 2      ω H 2 O
                                       R CO = ρ  k 4 ω CO                     ,               (4.122)
                                                                     M H 2 O
                                                          M O 2
                            where ω H 2 O is treated as a parameter of the problem. The steam mass fraction is, of
                            course, small enough so that it does not take part in other possible reactions. These
                            rate laws are taken from Smoot and Pratt [68] and Turns [82].
                                                                                           ,ω CO , and
                               The problem thus requires solution of equations for   = u,ω O 2  ,ω CO 2
                            enthalpy h. We define h = C p (T − T ref ) so that the source terms for each of the
                            variables are
                                                               2
                                                      S u = ρ C x  V,                         (4.123)
                                                             1 M O 2
                                                         =−         R CO  V,                  (4.124)
                                                     S ω O 2
                                                             2 M CO
                                                            M CO 2
                                                         =       R CO  V,                     (4.125)
                                                    S ω CO 2
                                                            M CO
                                                         =− R CO  V,                          (4.126)
                                                     S ω CO
                                                      S h = R CO  H 4  V.                     (4.127)

                               The total carbon burn rate is given by

                                                    ˙ m = ˙ m     + ˙ m     + ˙ m      .      (4.128)

                                                     c     c1w    c2w    c3w
                               To effect the wall boundary condition for mass fractions, we modify Equa-
                            tion 4.59 to account for surface reaction:


                                           ˙ m = (ω k,w − ω k,T ) −1  ρ D k  ∂ω k       + ˙ m     ,  (4.129)

                                            c                                    ω k
                                                                      ∂y    y=0
                            where ˙ m      is the surface generation rate of species k and ω k,T = 0 for all species.
                                    ω k
                            After discretisation, the wall mass fractions can be deduced from
                                                ρ D/ y ω O 2 ,nw − ( ˙ m     c1w  + 0.5 ˙ m    c2w  ) M O 2  /M C
                                        ω O 2 ,w =                                      ,     (4.130)
                                                              ρ D/ y + ˙ m     c
                                                ρ D/ y ω CO 2 ,nw + ( ˙ m     c1w  − ˙ m     c3w ) M CO 2  /M C
                                       ω CO 2 ,w =                                     ,      (4.131)
                                                             ρ D/ y + ˙ m
                                                                         c
                                                ρ D/ y ω CO,nw + ( ˙ m     + 2 ˙ m     c3w  ) M CO /M C
                                                                   c2w
                                       ω CO,w =                                        ,      (4.132)
                                                             ρ D/ y + ˙ m     c
   112   113   114   115   116   117   118   119   120   121   122