Page 209 - Introduction to Computational Fluid Dynamics
P. 209

P1: IWV
                                                                                                11:10
                                                                                   May 25, 2005
                                        0 521 85326 5
                           CB908/Date
            0521853265c06
                     188
                            It is easy to show that             2D CONVECTION – COMPLEX DOMAINS
                                                                           l P 2 B  i
                                                  − x i,P = l xi = x i,B − x i,P −  β ,       (6.113)
                                              x i,P 2                           1
                                                                            A B
                                                                         (
                                                         2

                                                                       i    A B .             (6.114)

                                                                       1
                                                            (x i,B − x i,P )β
                                                 l P 2 B =
                                                        i=1

                            Thus, Equation 6.108 can be written as
                                q

                               (  · A) B = C B [ f B (  P +    P ) + (1 − f B )  B ] − d B [  B −   P −    P ] ,
                                                                                              (6.115)
                            where the diffusion coefficient is given by
                                                                
 B A B
                                                          d B =      .                        (6.116)
                                                                 l P 2 B
                               Using Equation 6.115, implementation of boundary conditions for scalar and
                            vector variables will be discussed separately.
                               Scalar Variables: For the near-boundary cell, Equation 6.103 is first rewritten
                            as
                                            NK−B               NK−B
                                      V                                            V
                                   ρ P o  +      AE k    l+1  =     AE k   l+1  + ρ P o    o P
                                                                          Ek
                                                         P
                                       t                                            t
                                             k=1                k=1
                                                                         NK−B

                                                                                l
                                                               + S  V +             q         (6.117)
                                                                              D − (  · A) B
                                                                                k
                                                                          k=1
                            where NK − B implies that the boundary face contribution is excluded from the

                                                                     q
                            summation and accounted for through the −(  · A) B term. This accounting can
                            now also be done via Su and Sp as

                                        Su − Sp   P =−( q · A) B
                                                    =−C B [ f B (  P +    P ) + (1 − f B )  B ]
                                                      + d B [  B −   P −    P ] .             (6.118)
                            Thus, when   B is specified, it is possible to write
                                       Su =−C B [ f B    P + (1 − f B )  B ] + d B [  B −    P ] ,

                                       Sp = C B f B + d B .                                   (6.119)

                               Sometimes, boundary influx F B = 
 B ∂ /∂n | B is specified. Then, it can be
                            shown that

                                            Su =−C B [ f B    P + (1 − f B )  B ] + F B A B ,
                                            Sp = C B f B .                                    (6.120)
   204   205   206   207   208   209   210   211   212   213   214