Page 205 - Introduction to Computational Fluid Dynamics
P. 205

P1: IWV
                                                                                   May 25, 2005
                                                                                                11:10
                           CB908/Date
            0521853265c06
                     184
                            where       0 521 85326 5           2D CONVECTION – COMPLEX DOMAINS
                                                              l P 1 e  i
                                              l xi = x i,e − x i,P −  β 1                      (6.87)
                                                               A c
                                                               1
                                             d xi = x i,c − x i,e =  (x ia + x ib ) − x ie ,   (6.88)
                                                               2
                                                                             (
                                                              2

                                                                            i    A c .         (6.89)
                                                                           1
                                             l P 1 e = l Pe · n =    (x i,e − x i,P )β

                                                             i=1
                               Now, since coordinates of e, P, a, and b are known, using Equations 6.86 and
                            6.80, we can write Equation 6.77 as
                                                                    2

                                                                                ∂
                                              =   P +    P =   P +    (l xi + d xi )     .     (6.90)
                                            P 2

                                                                                ∂x i P
                                                                   i=1
                            Invoking similar arguments, it can be shown that
                                                               2
                                                                        (1 − f m,c )  ∂
                                         =   E +    E =   E +     d xi −                   .   (6.91)
                                       E 2                                       l xi

                                                                           f m,c      ∂x i E
                                                              i=1
                               Now,   a and   b are evaluated as the average of two estimates in the following
                            manner:

                                              a = 0.5   P + l Pa ∇   P +   E + l Ea ∇   E ,    (6.92)

                                              b = 0.5   P + l Pb ∇   P +   E + l Eb ∇   E .    (6.93)
                            6.3.8 Final Discretised Equation
                            Substituting Equations 6.90 to 6.93 in Equation 6.76 and performing some algebra,
                            we can write the resulting discretised equation as
                                                              NK
                                                        V
                                       
         o  o
                                        ρ P   P − ρ        +     C ck [ f c   P + (1 − f c )  E ]
                                                 P  P                                   k
                                                        t
                                                             k=1
                                                              NK

                                                           −     d ck (  E −   P ) k
                                                             k=1
                                                                     NK

                                                           = S  V +      D k ,                 (6.94)
                                                                     k=1
                            where

                                                                                        ]
                                                          − 0.5(  a +   b ) + (1 − f m,c )  P 2 k
                                     D k =−d ck B ck [ f m,c   E 2
                                          + d ck (   E −    P ) k − C ck [ f c    P + (1 − f c )   E ] .  (6.95)
                                                                                          k
   200   201   202   203   204   205   206   207   208   209   210