Page 277 - Introduction to Computational Fluid Dynamics
P. 277

P1: KsF/ICD
                                        0 521 85326 5
                                                                                   May 10, 2005
                           CB908/Date
            0521853265c08
                     256
                                                                       NUMERICAL GRID GENERATION
                            Table 8.2: Coordinates of suction (upper half) and pressure (lower half)  16:28
                            surfaces – GE90 blade.
                            x 1 /C ax  x 2 /C ax    x 1 /C ax  x 2 /C ax    x 1 /C ax  x 2 /C ax
                            0.0000       0.0242     0.2365       0.2752     0.7735     −0.1793
                            0.0014       0.0377     0.2989       0.2886     0.8071     −0.2703
                            0.0063       0.0550     0.3656       0.2868     0.8383     −0.3621
                            0.0155       0.0759     0.4328       0.2684     0.8678     −0.4545
                            0.0296       0.1001     0.4967       0.2348     0.8959     −0.5473
                            0.0484       0.1269     0.5556       0.1878     0.9229     −0.6404
                            0.0722       0.1565     0.6083       0.1304     0.9491     −0.7338
                            0.1014       0.1878     0.6552       0.0646     0.9747     −0.8273
                            0.1376       0.2200     0.6942     −0.0025      0.9997     −0.9210
                            0.1822       0.2506     0.7364     −0.0897      1.0000     −0.9235
                            0.0000       0.0242     0.1147       0.0124     0.7238     −0.3864
                            0.0009       0.0146     0.1434       0.0190     0.7603     −0.4915
                            0.0031       0.0079     0.1760       0.0244     0.7950     −0.5183
                            0.0052       0.0038     0.2133       0.0273     0.8282     −0.5854
                            0.0070       0.0013     0.2551       0.0256     0.8603     −0.6531
                            0.0085       0.0000     0.3006       0.0180     0.8914     −0.7212
                            0.0098     −0.0007      0.3478       0.0035     0.9218     −0.7897
                            0.0120     −0.0018      0.3950     −0.0175      0.9515     −0.8585
                            0.0153     −0.0031      0.4412     −0.0452      0.9807     −0.9274
                            0.0205     −0.0046      0.4857     −0.0789      0.9828     −0.9306
                            0.0279     −0.0055      0.5286     −0.1184      0.9859     −0.9327
                            0.0384     −0.0054      0.5695     −0.1626      0.9895     −0.9336
                            0.0522     −0.0035      0.6088     −0.2112      0.9932     −0.9330
                            0.0694       0.0003     0.6441     −0.2596      0.9968     −0.9309
                            0.0903       0.0058     0.6853     −0.3222      0.9992     −0.9276
                              –           –           –           –         1.0000     −0.9235



                                (c) Calculate geometric coefficients B11 (N , K) and B21 (N , K); cell-face
                                   area ACF (N , K); lengths LP2E2 (N , K), LX1 (N , K), LX2 (N , K), DX1
                                   (N , K), and DX2 (N , K); and weighting factor FM (N , K).
                                (d) Calculate the cell volume VOL (N) of each element.
                                Including the boundary nodes, what is the total number of nodes, NMAX?
                            10. To dispel the idea that unstructured meshes must necessarily be triangular or
                                polygonal, an analyst maps a complex domain with essentially a Cartesian
                                mesh, as shown in Figure 8.17. Now, it is seen that cells with more or less
                                than four faces occur near an irregular boundary (see the enlarged view) and
                                the dimensions of such cells can be determined from the known coordinates
                                of the irregular boundary. Essentially, therefore, the mesh can be generated by
                                algebraic specification. It is also possible to obtain any desired cell density. Of
                                course, to do this automatically, a computer program must be written. Further,
   272   273   274   275   276   277   278   279   280   281   282