Page 60 - Introduction to Computational Fluid Dynamics
P. 60

P1: IWV/ICD
                           CB908/Date
            0521853265c02
                        2.8 METHODS OF SOLUTION
                                                 6
                              2    3    4 0 521 85326 5  7  8   9    10 N − 1      May 25, 2005  10:49  39
                                             5
                         2    1   −a
                                    2   0    0   0     0    0    0   0    0     T           C
                                                                                 2            2
                         3    −b
                                3   1   −a   0   0    0    0    0    0    0     T           C
                                          3                                      3            3
                         4     0                 0    0    0     0   0    0
                              0                       0     0    0        0
                         5          0                                0
                         6     0   0 0  0  − b i  1   − a i  0  0    0    0      T          C
                                                                                  i           i
                                                                          0
                         7     00 0  00  0   0                  0    0
                               0    0   0                            0
                         8                   0    0                       0
                         9     0   0    0    0    0   0                   0

                               0             0                         − a
                         10         0   0         0   0     0             10
                        N − 1  0 0  00  0 0  0   0     0   0   0    −b  N−1  1  T N−1       C N−1

                        Figure 2.9. Diagonally dominant matrix [A].


                        in Figure 2.9. Notice that the coefficient of T i occupies the diagonal position of
                        the matrix with −a i and −b i occupying the neighbouring diagonal positions. All
                        other elements of the matrix are zero. The matrix [A] thus has diagonally dominant
                        tridiagonal structure. This structure can be exploited as follows. Let
                                         T i = A i T i+1 + B i ,  i = 2,..., N − 1.        (2.71)

                        Then

                                                  T i−1 = A i−1 T i + B i−1 .              (2.72)
                        Now, substituting this equation in Equation 2.69, we can show that


                                                   a i             b i B i−1 + c i
                                        T i =              T i+1 +              .          (2.73)
                                               1 − b i A i−1       1 − b i A i−1
                        Comparison of Equation 2.73 with Equation 2.71 shows that
                                                              a i
                                                    A i =           ,                      (2.74)
                                                         1 − b i A i−1

                                                         b i B i−1 + c i
                                                    B i =           .                      (2.75)
                                                         1 − b i A i−1
   55   56   57   58   59   60   61   62   63   64   65