Page 330 - Lindens Handbook of Batteries
P. 330
13.36 PrImArY BATTErIES
open for 7 days in a 20°C, 20% relative humidity environment. In that time the cells lost an average
of 11.7 mg water vapor and then when tested on the 620 ohm test in the same 20% relative humid-
ity environment performed at 65% of the typical initial 20% rH results. Design A, with the lowest
limiting current, had the best retention after open stand, since it restricts water vapor transport up to
85% better than the other designs.
REFERENCES
1. F. Kober and H. West, “The Anodic Oxidation of Zinc in Alkaline Solutions,” Extended Abstracts, The
Electrochemical Society, Battery Division 12, 66–69 (1967).
2. A. Fleischer and J. Lander (eds.), Zinc-Silver Oxide Batteries, Wiley, new York, 1971.
3. W. m. Latimer, Oxidation Potentials, Prentice Hall, Englewood Cliffs, nJ, 1952.
4. D. r. Lide (editor-in-chief), Handbook of Chemistry and Physics, 73rd ed., CrC Press, Boca raton, FL,
1992.
5. A. Shimizu and Y. Uetani, “The Institute of Electronics and Communication Engineers of Japan,” Tech. Paper
CPm79-55, 1979.
6. T. nagaura and T. Aita, U.S. Patent 4,370,395 (1981).
7. T. nagaura, “new material AgniO for miniature Alkaline Batteries,” Progress in Batteries and Solar Cells,
2
4:105–107 (1982).
8. E. A. megahed, “Small Batteries for Conventional and Specialized Applications,” The Power Electronics
Show and Conference, San Jose, CA, pp. 261–272 (1986).
9. B. C. Cahan, U.S. Patent 3,017,448 (1959).
10. P. ruetschi, in Zinc-Silver Oxide Batteries, A. Fleischer and J. J. Lander, eds., Wiley, new York, p. 117
(1971).
11. E. A. megahed and C. r. Buelow, U.S. Patent 4,078,127 (1978).
12. A. Tvarusko, J. Electrochem. Soc. 116:1070A (1969).
13. S. m. Davis, U.S. Patent 3,853,623 (1974).
14. E. A. megahed, C. r. Buelow, and P. J. Spellman, U.S. Patent 4,009,056 (1977).
15. E. A. megahed and D. C. Davig, “Long Life Divalent Silver Oxide-Zinc Primary Cells for Electronic
Applications,” in Power Sources, Vol. 8, Academic, London, 1981.
16. E. A. megahed and D. C. Davig, “rayovac’s Divalent Silver Oxide-Zinc Batteries,” Progress in Batteries and
Solar Cells. 4:83–86 (1982).
17. E. A. megahed and A. K. Fung, U.S. Patent 4,835,077 (1989).
18. J. L. Passaniti, E. A., megahed, and n. Zreiba, U.S. Patent 5,389,469 (1994).
19. “Bismuth,” in Minerals, Facts, and Problems, Bureau of mines Bulletin 675, U.S. Department of the Interior
(1985).
20. E. J. rubin and r. Babaoian, “A Correlation of the Solution Properties and the Electrochemical Behavior
of the nickel Hydroxide Electrode in Binary Aqueous Alkali Hydroxides,” J. Electrochem. Soc. 118:428
(1971).
21. “Kagaku Benran,” maruzen, Tokyo, 1966.
22. H. André, Bull. Soc. Franc. Elect. 6:1, 132 (1941).
23. V. D’Agostino, J. Lee, and G. Orban, “Grafted membranes,” in Zinc-Silver Oxide Batteries, A. Fleischer and
J. J. Lander, eds., Wiley, new York, 1971, pp. 271–281.
24. r. Thornton, “Diffusion of Soluble Silver-Oxide Species in membrane Separators,” General Electric Final
report, Schenectady, nY (1973).
25. S. Hills, “Thermal Coefficients of EmF of the Silver (I) and the Silver (II) Oxide-Zinc-45% Potassium
Hydroxide Systems,” J. Electrochem. Soc. 108:810 (1961).
26. m. n. Hull and H. I. James, “Why Alkaline Cells Leak,” J. Electrochem. Soc. 124:332–339 (1977).