Page 78 - Lindens Handbook of Batteries
P. 78
ELECTROCHEMICAL PRINCIPLES AND REACTIONS 2.35
For nonaqueous solutions, the reader is also referred to a chapter by Butler in volume 7 of the
45
series Advances in Electrochemistry and Electrochemical Engineering. For studies on Li and
Li-ion batteries, the preferred reference electrode is metallic lithium, but use of metallic lithium is
not always feasible, particularly when it is not stable in some electrolyte solutions such as several
ionic liquids, and when temperatures exceed the melting point of pure lithium. In the latter case, a
high melting point Li alloy such as LiAl 35,38 can be used, and in the former case a pseudo-reference
can be used. Pseudo-reference electrodes typically used in solutions reactive with Li are metal wires
(e.g., Al, Pt, or Ag) immersed in the electrolyte solution. Although such electrodes often provide a
constant potential, they have no thermodynamic significance. Instead of a wire electrode, a good
thermodynamically stable reference related to metallic lithium is a metal oxide such as Li Ti O
4
5
12
+ 46
which has reversible potential of 1.55 V versus Li/Li .
REFERENCES
1. J. O’M. Bockris and A. K. N. Reddy, Modern Electrochemistry, vol. 2, Plenum, New York, 1970, p. 644.
2. H. H. Bauer, J Electroanal. Chem. 16:419 (1968).
3. J. Horiuti and M. Polanyi, Acta Physicochim. U.S.S.R. 2:505 (1935).
4. J. O’M. Bockris and A. K. N. Reddy, op. cit., p. 918; see also J. O’M. Bockris, “Electrode Kinetics” in
Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds., Butterworths, London, 1954,
Chap. 2.
5. P. Delahay, Double Layer and Electrode Kinetics, Interscience, New York, 1965.
6. J. O’M. Bockris and A. K. N. Reddy, op. cit., p. 742.
7. H. H. Bauer, Electrodics, Wiley, New York, 1972, p. 54, table 3.2.
8. A. Fick, Ann. Phvs. 94:59 (1855).
9. P. Delahay, New Instrumental Methods in Electrochemistry, lnterscience, New York, 1954.
10. J. S. Newman, Electrochemical Systems, 2d ed., Prentice Hall, Englewood Cliffs, NJ, 1991.
11. E. B. Yeager and J. Kuta, “Techniques for the Study of Electrode Processes,” in Physical Chemistry, vol.
IXA; Electrochemistry, Academic, New York, 1970, p. 346.
12. L. A. Matheson and N. Nichols, J. Electrochem. Soc. 73:193 (1938).
13. J. E. B. Randles, Trans. Faraday Soc. 44:327 (1948).
14. A. Sevcik, Coll. Czech. Chem. Comm. 13:349 (1948).
15. T. Berzins and P. Delahay, J. Am. Chem. Soc. 75:555 (1953).
16. P. Delahay, J. Am. Chem. Soc. 75:1190 (1953).
17. R. S. Nicholson and I. Shain, Anal. Chem. 36:706 (1964).
18. H. I. S. Sand, Phil. Mag. 1:45 (1901).
19. P. Delahay, New Instrumental Methods in Electrochemistry, op. cit.
20. P. Delahay and T. Berzins, J. Am. Chem. Soc. 75:2486 (1953).
21. C. N. Reilley, G. W. Everett, and R. H. Johns, Anal. Chem. 27:483 (1955).
22. T. Kambara and L. Tachi, J. Phys. Chem. 61:405 (1957).
23. M. D. Morris and J. J. Lingane, J. Electroanal. Chem. 6:300 (1963).
24. J. Broadhead and G. J. Hills, J. Electroanal. Chem. 13:354 (1967).
25. J. R. MacDonald, Impedance Spectroscopy, Emphasizing Solid Materials and Systems, Wiley, New York,
1987, pp. 154–155.
26. M. E. Orazem and B. Tribollet, Electrochemical Impedance Spectroscopy, ECS Series of Texts and
Monographs, Wiley-Blackwell, (Oct. 2008).
27. J. E. B. Randles, Disc. Faraday Soc. 1:11 (1947).
28. B. A. Boukamp, Solid State Ionics, 18:136 (1986).