Page 175 - MATLAB an introduction with applications
P. 175

160 ———  MATLAB: An Introduction with Applications


                       >> w=0:0.1:100;
                       >> [re, im] =nyquis t (G, w);
                       >> for i=1:1: length (w)
                       >> M (i) =abs (re (i) +j*im (i));
                       >> A (i) =atan2 (im (i), re (i))*(180/pi);
                       >> if 180–abs (A (i)) <=1;
                       >> re (i);
                       >> im (i);
                       >> K=1/abs (re (i));
                       >> fprintf (‘\nw =%g’, w (i))
                       >> fprintf (‘, Re=%g’, re (i))
                       >> fprintf (‘, Im =%g’, im (i))
                       >> fprintf (‘, M=%g’, M (i))
                       >> fprintf (‘, K=%g’, K)
                       >> Gm=20*log10 (1/M (i));
                       >> fprintf (‘, Gm=&G’, Gm)
                       >> break
                       >> end
                       >> end

                   Computer response:
                   numg =
                          1 7
                   Transfer function:
                                             s +  7
                                    +
                                s ∧  4 5 3 93 2 209 +s ∧  +  s ∧  +  s  1820
                   ans =
                   G(s)
                   Zero/pole/gain:
                                          ( +s  7)
                                    +
                                                +
                                (s ∧ 2 2 +s  35)(s ∧  2 3 +s  52)
                   The Nyquist plot is shown in Fig. E3.14.
















                   F:\Final Book\Sanjay\IIIrd Printout\Dt. 10-03-09
   170   171   172   173   174   175   176   177   178   179   180