Page 222 - MATLAB Recipes for Earth Sciences
P. 222
218 9 Multivariate Statistics
Correlation Matrix
+ 1.0
gal
sph
+ 0.5
flu
cla
qtz 0
ksp
pla
− 0.5
pyr
amp
− 1.0
amp pyr pla ksp qtz cla flu sph gal
Fig. 9.2 Correlation matrix containing Pearson·s correlation coefficients for each pair of
variables, such as minerals in a sediment sample. Light colors represent strong positive
linear correlations, whereas dark colors document negative correlations. Orange suggests
no correlation.
PCA, such as mean centering (zero means) or autoscaling (mean zero and
standard deviation equals one). However, we use the original data for com-
puting the PCA. The output of the function princomp includes the principal
components pcs, the component scores of the data newdata and the com-
ponent variances.
[pcs,newdata,variances] = princomp(data);
The fi rst five principal components PC to PC can be shown ty typing
1 5
pcs(:,1:5)
ans =
-0.3303 0.2963 -0.4100 -0.5971 0.1380
-0.3557 0.0377 0.6225 0.2131 0.5251
-0.5311 0.1865 -0.2591 0.4665 -0.3010
0.1410 0.1033 -0.0175 0.0689 -0.3367
0.6334 0.4666 -0.0351 0.1629 0.1794
0.1608 0.2097 0.2386 -0.0513 -0.2503
0.1673 -0.4879 -0.4978 0.2287 0.4756
0.0375 -0.2722 0.2392 -0.5403 -0.0068
0.0771 -0.5399 0.1173 0.0480 -0.4246