Page 262 - MEMS Mechanical Sensors
P. 262
9.11 Conclusion 251
[8] Abramowitz, S., “DNA Analysis in Microfabricated Formats,” Journal of Biomedical
Microdevices, Vol. 1, No. 2, 1999, pp. 107–112.
[9] Shoji, S., and M. Esashi, “Microflow Devices and Systems,” Journal of Micromechanics
and Microengineering, Vol. 4, 1994, pp. 157–171.
[10] Gravesen, P., J. Branebjerg, and O. S. Jensen, “Microfluidics—A Review,” Journal of
Micromechanics and Microengineering, Vol. 3, 1993, pp. 168–182.
[11] Gass, V., et al., “Integrated Flow-Regulated Silicon Micropump,” Proc. Transducers,
Yokohama, Japan, 1993, pp. 1048–1051.
[12] Elwenspoek, M., et al., “Towards Integrated Microliquid Handling Systems,” Journal of
Micromechanics and Microengineering, Vol. 4, 1994, pp. 227–245.
[13] Nguyen, N. T., et al., “Hybrid-Assembled Micro Dosing System Using Silicon-Based
Micropump/Valve and Mass Flow Sensor,” Sensors and Actuators, Vol. A69, 1998, pp.
85–91.
[14] Nguyen, N.-T., et al., “Integrated Flow Sensor for In Situ Measurement and Control of
Acoustic Streaming in Flexural Plate Wave Micropumps,” Sensors and Actuators, Vol.
A79, 2000, 115–121.
[15] Lo, L.-H., et al., “A Silicon Mass Flow Control Micro-System,” Mecanique and Industries,
Vol. 2, 2001, pp. 363–369.
[16] Hirata, K., and M. Esashi, “Stainless Steel-Based Integrated Mass-Flow Controller for
Reactive and Corrosive Gases,” Sensors and Actuators, Vol. A97–98, 2002, pp. 33–38.
[17] Liu, Y., et al., “A Modular Integrated Microfluidic Controller,” Proc. Actuator, Bremen,
Germany, 2002, pp. 231–234.
[18] Lammerink, T. S. J., et al., “Modular Concept for Fluid Handling System,” Proc. IEEE
Micro Electro Mechanical Systems, San Diego, CA, 1996, pp. 389–394.
[19] Richter, M., et al., “A Chemical Microanalysis System as a Microfluid System Demonstra-
tor,” Proc. Transducers, Chicago, IL, 1997, pp. 303–306.
[20] van der Schoot, B., M. Boillat, and N. de Rooij, “Micro-Instruments for Life Science
Research,” IEEE Trans. on Instrumentation and Measurement, Vol. 50, No. 6, 2001, pp.
1538–1542.
[21] Schabmueller, C. G. J., et al., “Micromachined Chemical Reaction System Realized on a
Microfluidic Circuitboard,” Proc. Eurosensors XII, Southampton, England, Vol. 1, Insti-
tute of Physic Publishing, Bristol, England, 1998, pp. 571–574.
[22] Norlin, P., et al., “A Chemical Micro Analysis System for the Measurement of Pressure,
Flow Rate, Temperature, Conductivity, UV-Absorption and Fluorescence,” Sensors and
Actuators, Vol. B49, pp. 34–39, 1998.
[23] Goosen, J. F. L., P. J. French, and P. M. Sarro, “Pressure, Flow and Oxygen Saturation Sen-
sors on One Chip for Use in Catheters,” Proc. International Conference on Micro Electro
Mechanical Systems (MEMS), Miyazaki, Japan, 2000, pp. 537–540.
[24] Tanase, D., et al., “Multi-Parameter Sensor System with Intravascular Navigation for
Catheter/Guide Wire Application,” Sensors and Actuators, Vol. A97–98, 2002, pp.
116–124.
[25] Fleming, W. J., “Overview of Automotive Sensors,” IEEE Sensors Journal, Vol. 1, No. 4,
2001, pp. 296–308.
[26] Marek, J., and M. Illing, “Microsystems for the Automotive Industry,” Proc. International
Electron Devices Meeting, San Francisco, CA, 2000, pp. 3–8.
[27] Brasseur, G., “Robust Automotive Sensors,” IEEE Instrumentation and Measurement
Technology Conference, Ottawa, Canada, 1997, pp. 1278–1283.
[28] Makinwa, K. A. A., and J. H. Huijsing, “A Smart Wind Sensor Using Thermal Sigma-Delta
Modulation Techniques,” Sensors and Actuators, Vol. A97–98, 2002, pp. 15–20.
[29] Park, S., et al., “A Flow Direction Sensor Fabricated Using MEMS Technology and Its Sim-
ple Interface Circuit,” Sensors and Actuators, Vol. B91, 2003, pp. 347–352.