Page 218 - Marks Calculation for Machine Design
P. 218

P1: Shibu/Sanjay
                          January 4, 2005
                 Brown˙C05
        Brown.cls
                  200
                            U.S. Customary 14:35  STRENGTH OF MACHINES  SI/Metric
                  and use Eq. (5.16) to calculate the minimum  and use Eq. (5.16) to calculate the minimum
                  principal stress (σ 2 ) as         principal stress (σ 2 ) as
                    σ 2 = σ avg − τ max = (7.65 − 8.54) kpsi  σ 2 = σ avg − τ max = (73.35 − 82.02) MPa
                       =− 0.89 kpsi                     =− 8.67 MPa
                  Step 4. Before going further, check that the  Step 4. Before going further, check that the
                  values for the principal stresses (σ 1 ) and (σ 2 )  values for the principal stresses (σ 1 ) and (σ 2 )
                  satisfy Eq. (5.17).                satisfy Eq. (5.17).
                            σ 1 + σ 2 = σ xx + σ yy            σ 1 + σ 2 = σ xx + σ yy
                     (16.19 − 0.89 ) kpsi = (15.3 + 0) kpsi  (155.37 − 8.67) MPa = (146.7 + 0) MPa
                           15.3 kpsi ≡ 15.3 kpsi             146.7MPa ≡ 146.7MPa
                  and they do.                       and they do.
                  Step 5. Using Eq. (5.9), calculate the rotation  Step 5. Using Eq. (5.9), calculate the rotation
                  angle (φ p ) for maximum and minimum princi-  angle (φ p ) for maximum and minimum princi-
                  pal stresses as                    pal stresses as
                             2τ xy   2 (−3.8 kpsi)             2τ xy   2 (−36.7MPa)
                    tan 2φ p =     =                  tan 2φ p =     =
                           σ xx − σ yy  (15.3 − 0) kpsi       σ xx − σ yy  (146.7 − 0) MPa
                           −7.6 kpsi                          −73.4MPa
                    tan 2φ p =     =−0.497            tan 2φ p =      =−0.500
                            15.3 kpsi                         146.7MPa
                      2 φ p =−26.4 ◦                    2 φ p =−26.6 ◦
                       φ p =−13.2 ◦                      φ p =−13.3 ◦
                  Step 6. Without the benefit of the graphical  Step 6. Without the benefit of the graphical
                  picture of Mohr’s circle, the only way to tell  picture of Mohr’s circle, the only way to tell
                  which principal stress this value of the rotation  which principal stress this value of the rotation
                  angle (φ p ) is associated with, is to substitute  angle (φ p ) is associated with is to substitute
                  this angle in Eq. (5.1) and see which stress is  this angle in Eq. (5.1) and see which stress is
                  determined. Substituting gives     determined. Substituting gives
                         σ xx + σ yy  σ xx − σ yy           σ xx + σ yy  σ xx − σ yy
                    σ x   x   =  +       cos 2θ       σ x   x   =  +        cos 2θ
                            2        2                         2       2
                         + τ xy sin 2θ                     + τ xy sin 2θ
                         (15.3 + 0) kpsi                    (146.7 + 0) MPa
                       =                                  =
                              2                                  2
                           (15.3 − 0) kpsi                   (146.7 − 0) MPa
                                                                                ◦
                                             ◦
                         +            cos 2(−13.2 )        +             cos 2(−13.3 )
                               2                                  2
                                                                              ◦
                                          ◦
                         +(−3.8 kpsi) sin 2(−13.2 )        +(−36.7MPa) sin 2(−13.3 )
                       = (7.65 kpsi)                      = (73.35 MPa)
                                                                             ◦
                                         ◦
                         +(7.65 kpsi) cos (−26.4 )         +(73.35 MPa) cos (−26.6 )
                                                                             ◦
                                          ◦
                         +(−3.8 kpsi) sin (−26.4 )         +(−36.7MPa) sin (−26.6 )
                       = (7.65 kpsi)                      = (73.35 MPa)
                         +(7.65 kpsi)(0.896)               +(73.35 MPa)(0.894)
                         +(−3.8 kpsi)(−0.445)              +(−36.7MPa)(−0.448)
   213   214   215   216   217   218   219   220   221   222   223