Page 222 - Marks Calculation for Machine Design
P. 222

P1: Shibu/Sanjay
                          January 4, 2005
                 Brown˙C05
        Brown.cls
                  204
                            U.S. Customary 14:35  STRENGTH OF MACHINES  SI/Metric
                  determined. Substituting gives     determined. Substituting gives
                        σ xx + σ yy  σ xx − σ yy           σ xx + σ yy  σ xx − σ yy
                   σ x   x   =  +       cos 2θ        σ x   x   =  +       cos 2θ
                           2        2                         2        2
                        + τ xy sin 2θ                      + τ xy sin 2θ
                        [10 + (−3)] kpsi                   [75 + (−25)]MPa
                      =                                  =
                             2                                   2
                         [10 − (−3)] kpsi                   [75 − (−25)]MPa
                                             ◦
                                                                                 ◦
                        +            cos 2(−15.8 )         +             cos 2(−15.5 )
                              2                                   2
                                        ◦
                                                                            ◦
                        +(−4 kpsi) sin 2(−15.8 )           +(−30 MPa) sin 2(−15.5 )
                                                                                 ◦
                      = (3.5 kpsi) + (6.5 kpsi) cos (−31.6 )  = (25 MPa) + (50 MPa) cos (−31.0 )
                                               ◦
                                       ◦
                                                                           ◦
                        +(−4 kpsi) sin (−31.6 )            +(−30 MPa) sin (−31.0 )
                      = (3.5 kpsi) + (6.5 kpsi)(0.852)   = (25 MPa) + (50 MPa)(0.857)
                        +(−4 kpsi)(−0.524)                 +(−30 MPa)(−0.515)
                      = (3.5 + 5.5 + 2) kpsi             = (25 + 43 + 15) MPa
                      = 11 kpsi = σ 1                    = 83 MPa
                    So the rotation angle found in step 5 is for the  So the rotation angle found in step 5 is for the
                  maximum principal stress (σ 1 ).   maximum principal stress (σ 1 ).
                  Step 7. Using Eq. (5.11), the rotation angle  Step 7. Using Eq. (5.11), the rotation angle
                  (φ s ) for the maximum shear stress becomes  (φ s ) for the maximum shear stress becomes
                                       ◦
                                ◦
                                                                          ◦
                                                                   ◦
                       φ s = φ p ± 45 =−15.8 ± 45 ◦      φ s = φ p ± 45 =−15.5 ± 45 ◦
                         = 29.2 ◦  or −60.8 ◦               = 29.5 ◦  or −60.5 ◦
                  where for reasons that will be presented in the  where for reasons that will be presented in the
                  discussion on Mohr’s circle, the negative value  discussion on Mohr’s circle, the negative value
                  (−60.8 ) will be chosen.           (−60.5 ) will be chosen.
                       ◦
                                                          ◦
                  Step 8. Display the principal stresses (σ 1 ) and  Step 8. Display the principal stresses (σ 1 ) and
                  (σ 2 ) found in step 3 at the rotation angle (φ p )  (σ 2 ) found in step 3 at the rotation angle (φ p )
                  found in step 5,and verified in step 6, in a rotated  found in step 5, and verified in step 6, in a rotated
                  element.                           element.
                                   4                               33
                            0                               0
                                        74.2°                           74.5°
                      11                              83
                                           –15.8°                          –15.5°
                                          11                              83
                                     0                               0

                              4                               33
   217   218   219   220   221   222   223   224   225   226   227