Page 318 - Marks Calculation for Machine Design
P. 318

P1: Shashi
                          January 4, 2005
                                      15:4
                 Brown˙C07
        Brown.cls
                                           STRENGTH OF MACHINES
                  300
                  Step 9. Calculate the area (A) of the larger diameter (d 1 ) for the stepped rod as
                                                      2
                                        π  2  π   3              2


                                    A =   d =       in  = 0.0276 in
                                          1
                                        4     4  16
                  Step 10. Calculate the mean axial stress (σ m ) and the alternating axial stress (σ a ) as
                                          F m    800 lb
                                     σ m =   =          = 29.0 kpsi
                                          A    0.0276 in 2
                                          F a   500 lb
                                     σ a =   =        2  = 18.1 kpsi
                                          A    0.0276 in
                  Step 11. Plot the mean axial stress (σ m ) and alternating axial stress (σ a ) from step 10, the
                  given ultimate tensile strength (S ut ), and the endurance limit (S e ) calculated in step 6 in a
                  Goodman diagram like that shown in Fig. 7.21.
                               )
                             (s a
                        47.0                               Scale: 2.5 kpsi × 2.5 kpsi
                         40  S e
                                                 Calculated stresses
                         30
                                s                              Goodman line
                         20      m
                        18.1
                         10
                                        s a                          S
                          0                                           ut  (s )
                            0  10  20  30  40  50  60  70  80  90  100  110  m
                                      29.0                           105
                      FIGURE 7.21  Goodman diagram for Example 2 (U.S. Customary).
                  Step 12. To answer question (a), calculate the factor-of-safety (n) using Eq. (7.25), which
                  represents the distance (d) in Fig. 7.12.
                         1   σ a  σ m  18.1 kpsi  29.0 kpsi
                          =    +    =         +        = (0.385) + (0.276) = 0.661
                         n   S e  S ut  47.0 kpsi  105 kpsi
                              1
                         n =      = 1.51
                             0.661
                  Step 13. To answer question (b), calculate the factor-of-safety (n m ) using Eq. (7.27), which
                  represents the distance (d m ) in Fig. 7.13.

                                      σ m                29.0 kpsi
                               S e 1 −      (47.0 kpsi) 1 −
                        σ a | σ m     S ut               105 kpsi   (47.0 kpsi)(0.724)
                   n m =     =            =                       =
                         σ a       σ a             18.1 kpsi            18.1 kpsi
                        34.03 kpsi
                      =         = 1.88
                        18.1 kpsi
                                           ) was substituted from Eq. (7.28).
                  where the alternating stress (σ a | σ m
   313   314   315   316   317   318   319   320   321   322   323