Page 38 - Marks Calculation for Machine Design
P. 38

P1: Shibu
                          January 4, 2005
                 Brown˙C01
        Brown.cls
                  20
                            U.S. Customary 12:26  STRENGTH OF MACHINES  SI/Metric
                  Example 3. Calculate the angle of twist (φ)  Example 3. Calculate the angle of twist (φ)
                  for a solid circular shaft, where  for a solid circular shaft, where
                    T = 6,000 ft · lb = 72,000 in · lb  T = 9,000 N · m
                    D = 3in = 2R                       D = 8cm = 0.08 m = 2R
                    L = 6ft = 72 in                    L = 2m
                                                                 9
                                                                    2
                              6
                                  2
                    G = 11.7 × 10 lb/in (steel)        G = 80.8 × 10 N/m (steel)
                  solution                           solution
                  Step 1. Calculate the polar moment of inertia  Step 1. Calculate the polar moment of inertia
                  (J) of the shaft using Eq. (1.22).  (J) of the shaft using Eq. (1.22).
                            1  4  1       4                   1   4  1       4
                        J =  πR =   π(1.5in)               J =  πR =  π(0.04 m)
                            2     2                           2      2
                          = 7.95 in 4                       = 0.00000402 m 4
                  Step 2. Substitute this value of the polar  Step 2. Substitute this value of the polar
                  moment of inertia(J), the torque (T ), the length  moment of inertia(J), the torque (T ), the length
                  (L), and the shear modulus of elasticity (G) into  (L), and the shear modulus of elasticity (G) into
                  Eq. (1.29) to give the angle of twist (φ) as  Eq. (1.29) to give the angle of twist (φ) as
                          TL                              TL
                      φ =                             φ =
                          GJ                              GJ
                            (72,000 in · lb)(72 in)            (9,000 N · m)(2m)
                        =            2     4            =
                                                                 9
                                 6
                                                                     2
                                                                                4
                          (11.7 × 10 lb/in )(7.95 in )    (80.8 × 10 N/m )(0.00000402 m )
                          5,184,000 lb · in 2              18,000 N · m 2
                        =                               =
                          93,015,000 lb · in 2            323,200 N · m 2
                        = 0.056 rad                     = 0.056 rad
                  Example 4. Determine the maximum torque  Example 4. Determine the maximum torque
                  (T max ) that can be applied to a solid circular  (T max ) that can be applied to a solid circular
                  shaft if there is a maximum allowable shear  shaft if there is a maximum allowable shear
                  stress (τ max ) and a maximum allowable angle  stress (τ max ) and a maximum allowable angle
                  of twist (φ), where                of twist (φ), where
                    τ max = 60 kpsi = 60,000 lb/in 2   τ max = 410 MPa = 410,000,000 N/m 2
                                                              ◦
                    φ max = 1.5 = 0.026 rad            φ max = 1.5 = 0.026 rad
                           ◦
                      D = 6in = 2R                      D = 15 cm = 0.15 m = 2R
                      L = 3ft = 36 in                    L = 1m
                               6
                                                                  9
                                                                      2
                                   2
                      G = 4.1 × 10 lb/in (aluminum)     G = 26.7 × 10 N/m (aluminum)
                  solution                           solution
                  Step 1. For a maximum shear stress (τ max ),  Step 1. For a maximum shear stress (τ max ),
                  solve for the maximum torque (T max ) in  solve for the maximum torque (T max ) in
                  Eq. (1.21) to give                 Eq. (1.21) to give
                                  τ max J                           τ max J
                            T max =                            T max =
                                   R                                  R
                  Step 2. Calculate the polar moment of inertia  Step 2. Calculate the polar moment of inertia
                  (J) of the shaft using Eq. (1.22).  (J) of the shaft using Eq. (1.22).
                             1     1                          1     1
                                4
                                                                 4
                         J =  πR =  π(3in) 4              J =  πR =   π(0.075 m) 4
                             2     2                          2     2
                           = 127.2in 4                      = 0.0000497 m 4
   33   34   35   36   37   38   39   40   41   42   43