Page 72 - Marks Calculation for Machine Design
P. 72

P1: Sanjay
                          January 4, 2005
                 Brown˙C02
        Brown.cls
                  54
                            U.S. Customary 16:18  STRENGTH OF MACHINES  SI/Metric
                  Step 3. Determine the deflection ( ) from  Step 3. Determine the deflection ( ) from
                  Eq. (2.16a).                       Eq. (2.16a).
                        Cx        2    2   2              Cx         2   2    2
                    =       [6 aL − x − 3 a − 2 L ]    =      [6 aL − x − 3 a − 2 L ]
                      6 (EI) L                           6 (EI) L
                         (15,000 ft · lb)(2ft)             (20,000 N · m)(1m)
                    =             2                    =         5    2
                              6
                      6(1.43 × 10 lb · ft )(12 ft)       6 (5.54 × 10 N · m )(4m)
                                                                                2
                                                                                  2
                                                                    2
                                                                          2
                                       2
                                                2
                                  2
                                              2
                      ×[(6(4)(12) − (2) − 3(4) − 2 (12) ) ft ]  ×[(6(1.5)(4)−(1) −3 (1.5) −2 (4) ) ft ]
                                2
                                                                   2
                        (30,000 lb · ft )                 (20,000 N · m )
                    =             3                    =        7   3
                              8
                      (1.03 × 10 lb · ft )               (1.33 × 10 N · m )
                                                                          2
                                       2
                      ×[(288 − 4 − 48 − 288) ft ]        ×[(36 − 1 − 6.75 − 32) ft ]

                               1                               −3  1       2
                                        2
                    =  2.9 × 10 −4  × [−52 ft ]        =  1.5 × 10  ft  × [−3.75ft ]
                               ft
                              12 in                               100 cm
                    =−0.015 ft ×  =−0.18 in ↓          =−0.0056 m ×    =−0.56 cm ↓
                               ft                                   m
                    = 0.18 in ↑                        = 0.56 cm ↑
                  Example 5. Calculate the deflection (  a ) at  Example 5. Calculate the deflection (  a ) at
                  the location (a) where the couple (C) acts,  the location (a) where the couple (C) acts,
                  where                              where
                    C = 15 ft · kip = 15,000 ft · lb   C = 20 kN · m = 20,000 N · m
                    L = 12 ft, a = 4 ft, b = 8ft       L = 4m, a = 1 1 / 2 m, b = 2 1 / 2 m
                              6
                                                                 5
                    EI = 1.43 × 10 lb · ft 2           EI = 5.54 × 10 N · m 2
                  solution                           solution
                  Calculate the deflection (  a ) where the force  Calculate the deflection (  a ) where the force
                  (F) acts from Eq. (2.17).          (F) acts from Eq. (2.17).
                          Cab                               Cab
                      a =      (2 a − L)                a =     (2 a − L)
                         3 (EI) L                         3 (EI) L
                          (15,000 ft · lb)(4ft)(8ft)      (20,000 N · m)(1.5m)(2.5m)
                       =             2                  =
                                                                        2
                                                                   5
                                 6
                         3 (1.43 × 10 lb · ft )(12 ft)     3 (5.54 × 10 N · m )(4m)
                         ×[2 (4ft) − 12 ft]               ×[2 (1.5m) − 4m]
                                                                4
                               5
                          4.8 × 10 lb · ft 3               7.5 × 10 N · m 3
                       =             [8 ft − 12 ft]     =        6   3  [3 m − 4m]
                                7
                         5.15 × 10 lb · ft 3              6.65 × 10 N · m
                       = (9.32 × 10 −3 )[−4 ft]         = (1.13 × 10 −2 )[−1m]
                                 12 in                             100 cm
                       =−0.037 ft ×  =−0.45 in ↓        =−0.0113 ft ×  m  =−1.13 cm ↓
                                  ft
                       = 0.45 in ↑                      = 1.13 cm ↑
                    Notice that the deflection (  a ) came out as a negative value, which means it is above the
                  axis of the beam where the couple (C) acts. As stated earlier, if the couple is located at the
                  midpoint of the beam, then the deflection at this point is zero.
   67   68   69   70   71   72   73   74   75   76   77