Page 66 - Mathematical Techniques of Fractional Order Systems
P. 66

Nonlinear Fractional Order Boundary-Value Problems Chapter | 2  55


                                               2
                                              @ ψðt; E; pÞ
                                  L ϕðt; E; pފ 5     ;                ð2:66Þ
                                   ½
                                                 @t 2
             with the property
                                      L½c 0 1 c 1 tŠ 5 0:              ð2:67Þ
                By choosing H(t) 5 1 and using Eq. (2.25) the solution terms u m is
             given as
                                    ðð
                                       m     1:9             2ðn11Þ  2
              u m ðt; EÞ 5 χ u m21 ðt; EÞ 1 h D pD ½ϕðt; E; pފðϕðt; E; pÞÞ  2 ψ dtdt
                        m                  t
                       1 c 0 1 c 1 t;
                                                                       ð2:68Þ
             where the constants c 0 and c 1 can be determined by the two boundary
             conditions:
                                    0
                                   u ð0; EÞ 5 u m ð0; EÞ 5 0:          ð2:69Þ
                                    m
                Using the properties of the homotopy derivative (2.7) the mth-order
             deformation Eq. (2.68) in simple form becomes
                                        ðð
                   u m ðt; EÞ 5 χ u m21 ðt; EÞ 1 h R m;n ðu m21 ; t; EÞdtdt 1 c 0 1 c 1 t;  ð2:70Þ
                            m
             where
                        m21  i
                        X X     1:9                        2
                 R m;23 5     D ½u m212i ðt; Eފu i2k ðt; EÞu i ðt; EÞ 2 ψ ð1 2 χ Þ;  ð2:71Þ
                                t                                m
                        i50 k50
             and
                               m21
                               X    1:9                  2
                        R m;22 5  D ½u m212i ðt; Eފu i ðt; EÞ 2 ψ ð1 2 χ Þ:  ð2:72Þ
                                    t                          m
                                i50
             term of solutions for Eq. (2.70) when n 52 3 are
                                              1  2 2
                                    u 1 ðt; EÞ 52 ht ψ ;               ð2:73Þ
                                              2
                                                      2:1 2
                                                           2
                                                 2
                            u 2 ðt; EÞ 52 0:455hð1:099t 1 ht E Þψ ;    ð2:74Þ
                                                  2:1 2
                            2
                                                                     2 4:1
                                       2
                                                             2 2:2 4
                                                                          2
             u 3 ðt; EÞ 5 0:0827hψ 2 ð2 6:0458t 2 11:0043ht E 2 4:9883h t E 1 h t Eψ Þ;
                                                                       ð2:75Þ
             and so on. Also, when n 52 2, the solution of Eq. (2.70) are given by
                                              1
                                                 2 2
                                    u 1 ðt; EÞ 52 ht ψ ;               ð2:76Þ
                                              2
   61   62   63   64   65   66   67   68   69   70   71