Page 76 - Mathematical Techniques of Fractional Order Systems
P. 76

Nonlinear Fractional Order Boundary-Value Problems Chapter | 2  65





                2.5

                2.0


               u(t)  1.5                 λ = 2, Lower solution
                                         λ = 2, Upper solution
                                         λ = 3, Lower solution
                1.0
                                         λ = 3, Upper solution

                0.5

                0.0
                   0.0        0.2        0.4       0.6        0.8        1.0
                                               t
             FIGURE 2.16 The approximate solutions of the Bratu’s problem (2.90) when α 5 1.9 and dif-
             ferent values of λ.


                The mth-order deformation Eq. (2.25) of the problem (2.99) reads as
                                         α             m              2
                L½u m ðt; EÞ 2 χ u m21 ðt; Eފ 5 hfD u m21 ðt; EÞ 2 βD ½ptð1 1 ðϕðt; E; pÞÞ ÞŠg
                           m
                                         t
                                                                      ð2:103Þ
                               4
                               @
                By selecting L 5  @t 4 and using the properties of homotopy derivative D m
             (2.7) thus the explicit form of the mth-order deformation Eq. (2.103) is
             given by
                                   ðð ðð
                                                                      2
                                                                            3
             u m ðt; EÞ 5 χ u m21 ðt; EÞ 1 h  R m ðu m21 ; t; EÞdtdtdtdt 1 c 0 1 c 1 t 1 c 2 t 1 c 3 t ;
                      m
                                                                      ð2:104Þ
             where
                                     m21
                        α            X
                 R m 5 D u m21 ðt; EÞ 2 βt  u i ðt; EÞu m212i ðt; EÞ 2 βtð1 2 χ Þ;  ð2:105Þ
                        t                                      m
                                     i50
             and the integration constants c i , i : 0, 1, 2, 3 can be determined by the
             boundary conditions:
                                    0
                          u m ð1; EÞ 5 u ð0; EÞ 5 u ð1; EÞ 5 uv m ð1; EÞ 5 0:  ð2:106Þ
                                            0
                                    m       m
                Starting by the following initial solution
   71   72   73   74   75   76   77   78   79   80   81