Page 77 - Mathematical Techniques of Fractional Order Systems
P. 77

66  Mathematical Techniques of Fractional Order Systems


                                                   3
                                   u 0 ðt; EÞ 5 E 1 Eðt21Þ ;         ð2:107Þ
            which satisfies the conditions (2.101), thus the first solution of Eq. (2.104) is
            given by

                               1           3                   2       2
                u 1 ððt; EÞÞ  52    hð211tÞ tβð1386 1 462t 1 1209E 1 559tE
                             55440

                              2 2     3 2    4 2     5 2     6 2   7 2
                         1 125t E 2 93t E 2 95t E 1 119t E 2 45t E 1 7t E Þ
                                                                     ð2:108Þ
            and so on. The mth-order approximate solution for the problem (2.99) with
            conditions (2.101) is

                                                M
                                               X
                               uðtÞ  U M ðt; h; EÞ 5  u m ðt; EÞ;    ð2:109Þ
                                               m50
            and with the help of the remaining condition (2.102), then
                                  00
                                            00
                                U ð0; h; EÞ 2 U ðγ; h; EÞ 5 0:       ð2:110Þ
                                 M          M































            FIGURE 2.17 The h 2 E curves of Eq. (2.110) for different value of and when γ 5 10, β 5 1/5.
   72   73   74   75   76   77   78   79   80   81   82