Page 75 - Mathematical Techniques of Fractional Order Systems
P. 75

64  Mathematical Techniques of Fractional Order Systems



              TABLE 2.4 The Numerical Solutions of Eq. (2.90) for Different Values of α
                           Lower solution              Upper solution

              t     α 5 2    α 5 1.9   α 5 1.8  α 5 2    α 5 1.9   α 5 1.8
              0.1   0.2157   0.2406    0.2607   0.5919   0.6037    0.6573
              0.2   0.3943   0.43498   0.4645   1.1284   1.1375    1.2224
              0.3   0.5284   0.57644   0.60665  1.571    1.558     1.6401
              0.4   0.6118   0.65929   0.68304  1.8693   1.8131    1.8512
              0.5   0.6401   0.6805    0.69319  1.9755   1.8646    1.8318
              0.6   0.6118   0.64097    .64133  1.8691   1.7133    1.6154
              0.7   0.5284   0.54504   0.53564  1.5708   1.4       1.2702
              0.8   0.3943   0.4004    0.38652  1.1283   0.9808    0.8601
              0.9   0.2157   0.21568   0.2047   0.5919   0.50342   0.42861




                2.0



                1.5
                                       α = 2, Lower solution
                                       α = 2, Upper solution
                                       α = 1.8, Lower solution
              u(t)  1.0                α = 1.8, Upper solution



                0.5




                0.0
                  0.0        0.2        0.4        0.6       0.8        1.0
                                              t
            FIGURE 2.15 The approximate solutions of the Bratu’s problem (2.90) when λ 5 3 and differ-
            ent values of α.

                              uð0Þ 5 u ð1Þ 5 uvð1Þ 5 0; uð1Þ 5 E;    ð2:101Þ
                                     0
            and the condition
                                     uvð0Þ 2 uvðγÞ 5 0:              ð2:102Þ
   70   71   72   73   74   75   76   77   78   79   80