Page 336 - Mechanical design of microresonators _ modeling and applications
P. 336

0-07-145538-8_CH06_335_08/30/05



                                         Microcantilever and Microbridge Systems for Mass Detection

                                          Microcantilever and Microbridge Systems for Mass Detection  335
                              for relatively thinner and narrower end segments, the mass prediction
                              by the full model can be 1.2 times larger than the result yielded by the
                              simplified model. For thicker and wider end segments, the relationship
                              reverses and the mass predicted by the full model is approximately
                              0.6 times the mass obtained through the simplified model.


                              References

                               1. R. Raiteri, M. Grattarola, H.-J. Butt, and  P. Skladal, Micromechanical
                                 cantilever-based biosensors,  Sensors and Actuators B, 79, 2001, pp.
                                 115–126.
                               2. C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith,
                                 W. L. Bryan, and J. M. Rochelle, Multiple-input microcantilever sensors,
                                 Ultramicroscopy, 82, 2000, pp. 17–21.
                               3. D. R. Baselt, B. Fruhberger, E. Klaassen, S. Cemalovic, C. L. Britton, S. V.
                                 Patel, T. E. Mlsna, D. McCorkle, and B. Warmack, Design and performance
                                 of microcantilever-based hydrogen sensor, Sensors and Actuators B, 88,
                                 2003, pp. 120–131.
                               4. I. Dufour and L. Fadel, Resonant microcantilever type chemical sensors:
                                 analytical modeling in view of optimization, Sensors and Actuators B, 91,
                                 2003, pp. 353–361.
                               5. E. Garcia, N.  Lobontiu, Y.  Nam, B. Ilic, and T. Reissman, Shape
                                 optimization of microcantilevers for mass variation  detection and  AFM
                                 applications,  SPIE04 International Conference, vol. 5390,  2004,  pp.
                                 421–427.
                               6. K.  B. Brown, W.  Allegretto,  F.  E.  Vermeulen, R. P. W. Lawson, and
                                 A. M. Robinson, Cantilever-in-cantilever micromachined pressure sensors
                                 fabricated  in CMOS technology,  1999  IEEE Canadian  Conference on
                                 Electrical and Computer Engineering, 1999, pp. 1686–1691.
                               7. H. Kawakatsu, H.  Toshiyoshi, D. Saya, and H. Fujita,  A silicon based
                                 nanometric oscillator for scanning probe microscopy operating in the 100
                                 MHz range,  Japanese Journal of Applied  Physics, 38, 1999,  pp.
                                 3962–3965.
                               8. B. Rogers, L. Manning, M. Jones, T. Sulchek, K. Muray, B. Beneschott, J.
                                 D. Adams, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, Mercury vapor
                                 detection with a self-sensing, resonating piezoelectric cantilever, Review of
                                 Scientific Instruments, 74(11), 2003, pp. 4899–4901.
                               9. L. Pinnaduwage, V.  Boiadjiev,  J.  E. Hawk, and T.  Thundat, Sensitive
                                 detection of plastic  explosives with self-assembled monolayer-coated
                                 microcantilevers, Applied Physics Letters, 83(7), 2003, pp. 1471–1473.
                              10. B. Ilic, D. Czaplewski, H. G. Craighead, P. Neuzil, C. Campagnolo, and C.
                                 Batt, Mechanical resonant immunospecific biological detector,  Applied
                                 Physics Letters, 77(3), 2000, pp. 449–451.





                           Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)
                                      Copyright © 2004 The McGraw-Hill Companies. All rights reserved.
                                        Any use is subject to the Terms of Use as given at the website.
   331   332   333   334   335   336   337