Page 430 - Mechanical Engineers' Handbook (Volume 4)
P. 430

References  419

                           30. W. Robinson, L. S. Han, R. H. Essig, and C. F. Heddleson, Heat Transfer and Pressure Drop Data
                              for Circular Cylinders in Ducts and Various Arrangements, Ohio State University Research Foun-
                              dation Report No. 41, Columbus, OH, 1951.
                           31. E. N. Sieder and G. E. Tate, ‘‘Heat Transfer and Pressure Drop of Liquids in Tubes,’’ Ind. Eng.
                              Chem. 28, 1429–1436 (1936).
                           32. H. Hausen, Z VDI, Beih. Verfahrenstech. 4, 91–98 (1943).
                           33. A. L. London, ‘‘Air Coolers for High Power Vacuum Tubes,’’ Trans. IRE ED-1, 9–26 (April, 1954).
                           34. K. A. Gardner, ‘‘Efficiency of Extended Surfaces,’’ Trans. ASME 67, 621–631 (1945).
                           35. W. M. Murray, ‘‘Heat Transfer Through an Annular Disc or Fin of Uniform Thickness,’’ J. Appl.
                              Mech. 5, A78–A80 (1938).
                           36. D. Q. Kern and A. D. Kraus, Extended Surface Heat Transfer, McGraw-Hill, New York, 1972.
                           37. D. E. Briggs and E. H. Young, ‘‘Convection Heat Transfer and Pressure Drop of Air Flowing across
                              Triangular Pitch Banks of Finned Tubes,’’ Chem. Eng. Prog. Symp. Ser. 41(59), 1–10 (1963).
                           38. A. D. Kraus, A. D. Snider, and L. F. Doty, ‘‘An Efficient Algorithm for Evaluating Arrays of
                              Extended Surface,’’ J. Heat Transfer 100, 288–293 (1978).
                           39. A. D. Kraus, Analysis and Evaluation of Extended Surface Thermal Systems, Hemisphere, New
                              York, 1982.
                           40. A. D. Kraus and A. D. Snider, ‘‘New Parametrizations for Heat Transfer in Fins and Spines,’’ J.
                              Heat Transfer 102, 415–419 (1980).
                           41. W. M. Kays and A. L. London, Compact Heat Exchangers, 3rd ed., McGraw-Hill, New York, 1984.
                           42. A. D. Kraus and A. Bar-Cohen, Thermal Analysis and Control of Electronic Equipment, Hemisphere,
                              New York, 1983.
                           43. A. E. Bergles and A. Bar-Cohen, ‘‘Direct Liquid Cooling of Microelectronic Components,’’ in Ad-
                              vances in Thermal Modeling of Electronic Components and Systems, Vol. 2, A. Bar-Cohen and A. D.
                              Kraus (eds.), ASME Press, New York, 1990, pp. 233–342.
                           44. J. Stevens and B. W. Webb, ‘‘Local Heat Transfer Coefficients Under an Axisymmetric, Single-
                              phase Liquid Jet,’’ National Heat Transfer Conference, Philadelphia, Pennsylvania, 1989, pp. 113–
                              119.
                           45. T. Nonn, Z. Dagan, and L. M. Jiji, ‘‘Boiling Jet Impingement Cooling of Simulated Microelectronic
                              Heat Sources,’’ ASME Paper 88-WA/EEP-3, ASME, New York, 1988.
                           46. X. S. Wang, Z. Dagan, and L. M. Jiji, ‘‘Heat Transfer Between a Laminar Free-surface Impinging
                              Jet and a Composite Disk,’’ Proceedings of the Ninth International Heat Transfer Conference, Vol.
                              4, Hemisphere, New York, 1990, p. 137.
                           47. D. J. Womac, G. Aharoni, S. Ramadhyani, and F. P. Incropera, ‘‘Single Phase Liquid Jet Impingement
                              Cooling of Small Heat Sources,’’ Heat Transfer 1990 (Proceedings of the Ninth International Heat
                              Transfer Conference), Vol. 4, Hemisphere, New York, 1990, pp. 149–154.
                           48. D. C. Wadsworth and L. Mudawar, ‘‘Cooling of a Multichip Electronic Module by Means of Con-
                              fined Two Dimensional Jets of Dielectric Liquid,’’ J. Heat Transfer 112, 891–898 (1990).
                           49. H. Martin, ‘‘Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces,’’ in Advanced
                              in Heated Transfer, Vol. 13, J. P. Hartnett and T. F. Irvine, Jr. (eds.), Academic Press, New York,
                              1977, pp. 1–60.
                           50. D. H. Womac, Single-phase Axisymmetric Liquid Jet Impingement Cooling of Discrete Heat Sources,
                              Thesis, Department of Mechanical Engineering, Purdue University, Lafayette, IN, 1989.
                           51. P. M. Brdlik and V. K. Savin, ‘‘Heat Transfer Between an Axisymmetric Jet and a Plate Normal to
                              the Flow,’’ J. Eng. Phys. 8, 91–98 (1965).
                           52. S. Sitharamayya and K. S. Raju, ‘‘Heat Transfer Between an Axisymmetric Jet and a Plate Hold
                              Normal to the Flow,’’ Can. J. Chem. Eng. 47, 365–368 (1969).
                           53. D. E. Maddox and A. Bar-Cohen, ‘‘Thermofluid Design of Submerged-jet Impingement Cooling for
                              Electronic Components,’’ Proceedings, ASME/AICHE National Heat Transfer Conference, Minne-
                              apolis, Minnesota, 1991.
                           54. H. A. El Sheikh and S. V. Garimella, ‘‘Heat Transfer from Pin-Fin Heat Sinks Under Multiple
                              Impinging Jets,’’ IEEE Transactions on Advanced Packaging 23(1), 113–120 (2000).
                           55. K. E. Starner and H. N. McManus, ‘‘An Experimental Investigation of Free Convection Heat Transfer
                              from Rectangular Fin Arrays,’’ J. Heat Mass Transfer 85, 273–278 (1963).
                           56. J. R. Welling and C. B. Wooldridge, ‘‘Free Convection Heat Transfer Coefficients from Rectangular
                              Vertical Fins,’’ J. Heat Transfer 87, 439–444 (1965).
   425   426   427   428   429   430   431   432   433   434   435