Page 181 - MODELING OF ASPHALT CONCRETE
P. 181

Interr elationships among Asphalt Concr ete Stif fnesses   159


                    Park, S. W., Kim, Y. R., and Schapery, R. A. (1996), “A Viscoelastic Continuum Damage
                       Model and Its Application to Uniaxial Behavior of Asphalt Concrete,” Mechanics of
                       Materials, Vol. 24(4), pp. 241–255.
                    Ramkumar, D. H. S., Caruthers, J. M., Mavridis, H., and Shroff, R. (1997), “Computation
                       of the Linear Viscoelastic Relaxation Spectrum from Experimental Data,” Journal of
                       Applied Polymer Science, Vol. 64, pp. 2177–2189.
                    Roque, R., Birgisson, B., Sangpetngam, B., and Zhang, Z. (2002), “Hot Mix Asphalt
                       Fracture Mechanics: A Fundamental Crack Growth Law for Asphalt Mixtures,”
                       Journal of Asphalt Paving Technology, AAPT, Vol. 71.
                    Schapery, R. A. (1961), “A Simple Collocation Method for Fitting Viscoelastic Models to
                       Experimental Data,” Report GALCIT SM 61-23A, California Institute of Technology,
                       Pasadena, California.
                    Schapery, R. A. (1962), “Approximate Methods of Transform Inversion for Viscoelastic
                       Stress Analysis,” Proc. 4th U.S. Nat. Cong. Appl. Mech., pp. 1075–1085.
                    Schapery, R. A. (1974), “Viscoelastic Behavior and Analysis of Composite Materials,”
                       Composite Materials, Chap. 4, Vol. 2, G. P. Sendeckyj Ed., Academic Press, pp. 85–168.
                    Schapery, R. A., and Park, S. W. (1999), “Methods of Interconversion between Linear
                       Viscoelastic Material Functions. Part II—An Approximate Analytical Method,”
                       International Journal of Solids and Structures, Vol. 36, pp. 1677–1699.
                    Schwarzl, F. R., and Struik, L. C. E. (1967), “Analysis of Relaxation Measurements,”
                       Advances in Molecular Relaxation Processes; Vol. 1, pp. 201–255.
                    Taylor, R. L., Pister, K. S., and Goudreau, G. L. (1970), “Thermomechanical Analysis of
                       Viscoelastic Solids,” International Journal for Numerical Methods in Engineering, Vol. 2,
                       pp. 45–49.
                    Tschoegl, N. W. (1989), The Phenomenological Theory of Linear Viscoelastic Behavior, Springer-
                       Verlag, Berlin.
                    Tschoegl, N. W., and Emri, I. (1992), “Generating Line Spectra from Experimental
                       Responses. Part III: Interconversion between Relaxation and Retardation Behavior,”
                       International Journal of Polymeric Materials, Vol. 18, pp. 117–127.
                    Tschoegl, N. W., and Emri, I. (1993), “Generating Line Spectra from Experimental Responses.
                       Part II: Storage and Loss Functions,” Rheologica Acta, Vol. 32, pp. 322–327.
                    Uzan, J. (1996), “Asphalt Concrete Characterization for Pavement Performance
                       Prediction,” Journal of Asphalt Paving Technology, AAPT, Vol. 65, pp. 573–607.
                    Williams, M. L. (1964), “Structural Analysis of Viscoelastic Materials,” AIAA Journal,
                       Vol. 2(5), pp. 785–808.
   176   177   178   179   180   181   182   183   184   185   186