Page 162 - Modeling of Chemical Kinetics and Reactor Design
P. 162

132    Modeling of Chemical Kinetics and Reactor Design

                              or

                                                    −
                                 t =  1    C {  1 A − n  − C }                           (3-87)
                                                   1
                                                     n
                                     (
                                                   AO
                                   kn − ) 1
                                The half-life is defined as the time required for the concentration
                              to drop to half of its initial value, that is, at t = t , C  = 1/2C  .
                                                                              1/2  A        AO
                              From Equation 3-86,
                                 2 (  − 1 C AO ) 1−n  −C 1−n  = kt 12 (n − 1)            (3-88)
                                               AO
                                 2 (  − 1  • 2 −  1) C 1−n  = kt 12 (n − 1)              (3-89)
                                       n
                                              AO
                                      2 (  n 1 − 1) C 1− n
                                        −
                                 t 12 =  kn 1) AO                                        (3-90)
                                         (
                                            −
                                Similarly, the time required for the concentration to fall to 1/p of
                              its initial value gives

                                      p (  n 1 − 1) C 1− n
                                        −
                                 t 1  p  =  kn 1) AO                                     (3-91)
                                         (
                                            −
                                Taking the natural logarithm of both sides of Equation 3-90 gives

                                                    1 (
                                                                      ln n 1)
                                            −
                                 ln t 12  = ln 2 (  n 1 − 1) +− n)  lnC AO − ln k − (  −  (3-92)
                                             −
                                          2 n 1 − 1
                                 ln t 12  = ln  kn 1)  + ( 1−  n ) lnC AO              (3-93)
                                           (  −  

                                Plots of ln t  versus ln C AO  from a series of half-life experiments
                                           1/2
                              are shown in Figure 3-9. Table 3-3 gives some expressions for reaction
                              half-lives.
                                The reaction rate constant k is

                                    (2 n−1  −1  C )  1 − n
                                 k =          AO                                         (3-94)
                                      ( n − ) 1  t 12
   157   158   159   160   161   162   163   164   165   166   167