Page 215 - Modeling of Chemical Kinetics and Reactor Design
P. 215
Reaction Rate Expression 185
Equating the coefficients of the constant and X gives
A
“Const” 1 = Aθ + B (3-268)
B
“X ” 0 = –3A – B (3-269)
A
Adding simultaneous Equations 3-268 and 3-269 gives 1 = A(θ – 3).
B
Therefore, A = 1/(θ – 3) and B = –3A = –3/(θ – 3). Equation 3-
B
B
267 is now expressed as
t
1 X A dX A − X A 3 dX A kdt
∫
∫
∫
=
B (
B (
31 X−
C AO 0 θ − )( A ) 0 θ − 3 θ )( B − 3X ) 0
A
−
= 1 − (1 X A ) − 3 − 1 ln ( B − 3X A ) = kt
θ
ln
θ
3
C AO ( B − ) 3
θ −3X )
1
= ln ( B A = kt (3-270)
3
C θ − ) − (1 X )
AO ( B A
Introducing the initial concentrations of A and B, that is, C AO and
C BO into Equation 3-270 gives
1 C BO C AO − 3X
=
A
ln
C 1 X A kt (3-271)
−
C AO BO − 3
C AO
3X
1 C BO C AO − A =
C ( − 3C ) ln 1 X ) kt (3-272)
− (
BO AO A
Rearranging Equation 3-272 gives
C C − 3 X
ln BO AO A = kt C ( BO −3 C ) (3-273)
AO
1 − X A