Page 222 - Multifunctional Photocatalytic Materials for Energy
P. 222
206 Multifunctional Photocatalytic Materials for Energy
[5] J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production tech-
nologies, Catal. Today 139 (4) (2009) 244–260.
[6] R. Kothari, D. Buddhi, R.L. Sawhney, Comparison of environmental and economic as-
pects of various hydrogen production methods, Renew. Sust. Energ. Rev. 12 (2) (2008)
553–563.
[7] A. Molino, S. Chianese, D. Musmarra, Biomass gasification technology: the state of
the art overview, J. Energy Chem. 25 (1) (2016) 20–25.
[8] A. Steinfeld, Solar thermochemical production of hydrogen––a review, Sol. Energy 78
(5) (2005) 603–615.
[9] Z. Wang, Z.Z. Roberts, G.F. Naterer, K.S. Gabriel, Comparison of thermochemical,
electrolytic, photoelectrolytic and photochemical solar-to-hydrogen production tech-
nologies, Int. J. Hydrog. Energy 37 (2012) 16287–16301.
[10] H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic
water splitting process: a review, Renew. Sust. Energ. Rev. 43 (2015) 599–610.
[11] A.V. Puga, Photocatalytic production of hydrogen from biomass-derived feedstocks,
Coord. Chem. Rev. 315 (2016) 1–66.
[12] M. Bowker, Sustainable hydrogen production by the application of ambient tempera-
ture photocatalysis, Green Chem. 13 (2011) 2235–2246.
[13] J.O.M. Bockris, S.U.M. Khan, Surface Electrochemistry, Plenum, New York, 1993.
[14] M. Kitano, M. Hara, Heterogeneous photocatalytic cleavage of water, J. Mater. Chem.
20 (2010) 627–641.
[15] K. Maeda, Photocatalytic water splitting using semiconductor particles: history and
recent developments, J Photochem Photobiol C: Photochem Rev 12 (2011) 237–268.
[16] M. Qureshi, K. Takanabe, Insights on measuring and reporting heterogeneous pho-
tocatalysis: efficiency definitions and setup examples, Chem. Mater. 29 (1) (2017)
158–167.
[17] A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting, Chem.
Soc. Rev. 38 (2009) 253–278.
[18] J.S. Jang, H.G. Kim, J.S. Lee, Heterojunction semiconductors: a strategy to develop
efficient photocatalytic materials for visible light water splitting, Catal. Today 185
(2012) 270–277.
[19] E. Liu, L. Kang, Y. Yang, T. Sun, X. Hu, C. Zhu, H. Liu, Q. Wang, X. Li, J. Fan,
Plasmonic Ag deposited TiO 2 nano-sheet film for enhanced photocatalytic hydrogen
production by water splitting, Nanotechnology 25 (2014) 1–10.
[20] F. Wu, X. Hu, J. Fan, E. Liu, T. Sun, L. Kang, W. Hou, C. Zhu, H. Liu, Photocatalytic
activity of Ag/TiO 2 nanotube arrays enhanced by surface plasmon resonance and appli-
cation in hydrogen evolution by water splitting, Plasmonics 8 (2) (2013) 501–508.
[21] C.G. Silva, R. Juarez, T. Marino, R. Molinari, H. Garcia, Influence of excitation wave-
length (UV or visible light) on the photocatalytic activity of titania containing gold
nanoparticles for the generation of hydrogen or oxygen from water, J. Am. Chem. Soc.
133 (2011) 595–602.
[22] L. Clarizia, D. Spasiano, I. Di Somma, R. Marotta, R. Andreozzi, D.D. Dionysiou,
Copper modified-TiO 2 catalysts for hydrogen generation through photoreforming of
organics. A short review, Int. J. Hydrog. Energy 39 (2014) 16812–16831.
[23] G. Colon, Towards the hydrogen production by photocatalysis, Appl. Catal. A Gen. 518
(2015) 48–59.
[24] L. Li, J. Yan, T. Wang, Z.J. Zhao, J. Zhang, J. Gong, N. Guan, Sub-10 nm rutile tita-
nium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen
production, Nat. Commun. 6 (2015) 5881–5891.