Page 227 - Multifunctional Photocatalytic Materials for Energy
P. 227
Metal-based semiconductor nanomaterials for photocatalysis 211
[95] W. Xu, D. Raftery, Photocatalytic oxidation of 2-propanol on TiO 2 powder and TiO 2
monolayer catalysts studied by solid-state NMR, J. Phys. Chem. B 105 (2001) 4343–4349.
[96] X. Fu, X. Wang, D.Y.C. Leung, Q. Gu, S. Chen, H. Huang, Photocatalytic reforming
of C 3 -polyols for H 2 production: part (I). Role of their OH groups, Appl. Catal. B 106
(2011) 681–688.
[97] C.Y. Wang, J. Rabani, D.W. Bahnemann, J.K. Dohrmann, Photonic efficiency and
quantum yield of formaldehyde formation from methanol in the presence of various
TiO 2 photocatalysts, J. Photochem. Photobiol. A 148 (2002) 169–176.
[98] M. Du, J. Feng, S.B. Zhang, Photo-oxidation of polyhydroxyl molecules on TiO 2 sur-
faces: from hole scavenging to light-induced self-assembly of TiO 2 -cyclodextrin wires,
Phys. Rev. Lett. 98 (2007) 1–4.
[99] X. Fu, J. Long, X. Wang, D.Y.C. Leung, Z. Ding, L. Wu, Z. Zhang, Z. Li, X. Fu,
Photocatalytic reforming of biomass: a systematic study of hydrogen evolution from
glucose solution, Int. J. Hydrog. Energy 33 (2008) 6484–6491.
[100] G. Balducci, The adsorption of glucose at the surface of anatase: a computational study,
Chem. Phys. Lett. 494 (2010) 54–59.
[101] S. Shen, L. Guo, Hydrothermal synthesis, characterization, and photocatalytic perfor-
mances of Cr incorporated, and Cr and Ti co-incorporated MCM-41 as visible light
photocatalysts for water splitting, Catal. Today 129 (2007) 414–420.
[102] X.J. Zheng, L.F. Wei, Z.H. Zhang, Q.J. Jiang, Y.J. Wei, B. Xie, M.B. Wei, Research on
photocatalytic H 2 production from acetic acid solution by Pt/TiO 2 nanoparticles under
UV irradiation, Int. J. Hydrog. Energy 34 (2009) 9033–9041.
[103] L. Jia, J. Li, W. Fang, Effect of H 2 /CO 2 mixture gas treatment temperature on the activ-
ity of LaNiO 3 catalyst for hydrogen production from formaldehyde aqueous solution
under visible light, J. Alloys Compd. 489 (2010) L13–L16.
[104] A. Patsoura, D.I. Kondarides, X.E. Verykios, Photocatalytic degradation of organic
pollutants with simultaneous production of hydrogen, Catal. Today 124 (2007) 94–102.
[105] A. Patsoura, D.I. Kondarides, X.E. Verykios, Enhancement of photoinduced hydrogen
production from irradiated Pt/TiO 2 suspensions with simultaneous degradation of azo-
dyes, Appl. Catal. B 64 (2006) 171–179.
[106] A. Caravaca, W. Jones, C. Hardacre, M. Bowker, H 2 production by the photocatalytic
reforming of cellulose and raw biomass using Ni, Pd, Pt and Au on titania, Proc. R.
Soc. 472 (2016) 20160054.
[107] Z.H.N. Al-Azri, W.T. Chen, A. Chan, V. Jovic, T. Ina, H. Idriss, G.I.N. Waterhouse, The
roles of metal co-catalysts and reaction media in photocatalytic hydrogen production:
performance evaluation of M/TiO 2 photocatalysts (M=Pd, Pt, Au) in different alcohol–
water mixtures, J. Catal. 329 (2015) 355–367.
[108] T. Sakata, T. Kawai, K. Hashimoto, Heterogeneous photocatalytic reactions of organic
acids and water. New reaction paths besides the photo-Kolbe reaction, J. Phys. Chem.
88 (1984) 2344–2350.
[109] D. Jing, Y. Zhang, L. Guo, Study on the synthesis of Ni doped mesoporous TiO 2 and
its photocatalytic activity for hydrogen evolution in aqueous methanol solution, Chem.
Phys. Lett. 415 (2005) 74–78.
[110] G. Sadanandam, K. Lalitha, V.D. Kumari, M.V. Shankar, M. Subrahmanyam, Cobalt
doped TiO 2 : a stable and efficient photocatalyst for continuous hydrogen production
from glycerol: water mixtures under solar light irradiation, Int. J. Hydrog. Energy 38
(2013) 9655–9664.
[111] L. Clarizia, G. Vitiello, G. Luciani, I. Di Somma, R. Andreozzi, R. Marotta, In-situ
photodeposited nanoCu on TiO 2 as a catalyst for hydrogen production under UV/visi-
ble radiation, Appl. Catal. A Gen. 518 (2016) 142–149.