Page 229 - Multifunctional Photocatalytic Materials for Energy
P. 229
Metal-based semiconductor nanomaterials for photocatalysis 213
[128] T. Takata, S. Shinohara, A. Tanaka, M. Hara, J.N. Kondo, K. Domen, A highly active
photocatalyst for overall water splitting with a hydrated layered perovskite structure, J.
Photochem. Photobiol. A Chem. 106 (1997) 45–49.
[129] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, K. Domen, GaN:ZnO
solid solution as a photocatalyst for visible-light-driven overall water splitting, J. Am.
Chem. Soc. 127 (2005) 8286–8297.
[130] K. Maeda, N. Saito, D. Lu, Y. Inoue, K. Domen, Photocatalytic properties of RuO 2 -
loaded β-Ge 3 N 4 for overall water splitting, J. Phys. Chem. C 111 (2007) 4749–4755.
[131] K. Maeda, K. Teramura, H. Masuda, T. Takata, N. Saito, Y. Inoue, K. Domen, Efficient
overall water splitting under visible light irradiation on (Ga 1-x Zn x )(N 1-x O x ) dispersed
with Rh−Cr mixed-oxide nanoparticles: Effect of reaction conditions on photocatalytic
activity, J. Phys. Chem. B 110 (2006) 13107–13112.
[132] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell, Photo-electrochemical hydrogen genera-
tion from water using solar energy. Materials-related aspects, Int. J. Hydrog. Energy 27
(2002) 991–1022.
[133] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications
of semiconductor photocatalysis, Chem. Rev. 95 (1995) 69–96.
[134] D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibanez, I. Di Somma, Solar photo-
catalysis: materials, reactors, some commercial, and pre-industrialized applications. A
comprehensive approach, Appl. Catal. B Environ. 170 (2015) 90–123.
[135] M. Kosmulski, Isoelectric points and points of zero charge of metal (hydr)oxides:
50 years after Parks’ review, Adv. Colloid Interf. Sci. 238 (2016) 1–61.
[136] Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence
bands of selected semiconducting minerals, Am. Mineral. 85 (2000) 543–556.
[137] A.A. Nada, H.A. Hamed, M.H. Barakat, N.R. Mohamed, T.N. Veziroglu, Enhancement
2+
of photocatalytic hydrogen production rate using photosensitized TiO 2 /RuO 2 –MV ,
Int. J. Hydrog. Energy 33 (2008) 3264–3269.
[138] A.A. Ismail, Mesoporous PdO–TiO 2 nanocomposites with enhanced photocatalytic ac-
tivity, Appl. Catal. B Environ. 117–118 (2012) 67–72.
[139] K. Lalitha, J.K. Reddy, M.V.P. Sharma, V.D. Kumari, M. Subrahmanyam, Continuous
hydrogen production activity over finely dispersed Ag 2 O/TiO 2 catalysts from meth-
anol:water mixture under solar irradiation: a structure–activity correlation, Int. J.
Hydrog. Energy 35 (2010) 3991–4001.
[140] O. Rosseler, M.V. Shankar, M. Karkmaz-Le Du, L. Schmidlin, N. Keller, V. Keller,
Solar light photocatalytic hydrogen production from water over Pt and Au/TiO 2 (ana-
tase/rutile) photo-catalysts: Influence of noble metal and porogen promotion, J. Catal.
269 (2010) 179–190.
[141] T. Hisatomi, K. Miyazaki, K. Takanabe, K. Maeda, J. Kubota, Y. Sakata, K. Domen,
Isotopic and kinetic assessment of photocatalytic water splitting on Zn-added Ga2O3
photocatalyst loaded with Rh2-yCryO3 cocatalyst, Chem. Phys. Lett. 486 (2010)
144–146.
[142] T. Hisatomi, K. Maeda, K. Takanabe, J. Kubota, K. Domen, Aspects of the water split-
ting mechanism on (Ga 1−x Zn x )(N 1−x O x ) photocatalyst modified with Rh 2−y Cr y O 3 co-
catalyst, J. Phys. Chem. C 113 (2009) 21458–21466.
[143] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor elec-
trode, Nature 238 (1972) 37–38.