Page 226 - Multifunctional Photocatalytic Materials for Energy
P. 226

210                                Multifunctional Photocatalytic Materials for Energy

           [77]  R.M.  Navarro, F.  Del  Valle, J.A.  Villoria de la Mano, M.C.  Alvarez-Galvan,
               J.L.G. Fierro, Photocatalytic water splitting under visible light: concept and catalysts
               development, Adv. Chem. Eng.-Progr. Photocatal. React. Eng. 36 (2009) 111–143.
           [78]  R. Luque, A.M. Balu, Producing fuels and fine chemicals from biomass using nanoma-
               terials, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013.
           [79]  T. Takata, K. Domen, Defect engineering of photocatalysts by doping of aliovalent
               metal cations for efficient water splitting, J. Phys. Chem. C (45) (2009) 19386–19388.
           [80]  Y. Li, G. Chen, Q. Wang, X. Wang, A. Zhou, Z. Shen, Hierarchical ZnS-In 2 S 3 -CuS
               nanospheres with nanoporous structure: Facile synthesis, growth mechanism, and ex-
               cellent photocatalytic activity, Adv. Funct. Mater. 20 (2010) 3390–3398.
           [81]  S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Visible light induced
               hydrogen evolution on new hetero-system ZnFe 2 O 4 /SrTiO 3 , Appl. Energy 87 (2010)
               2230–2236.
           [82]  A. Koca, M. Sahin, Photocatalytic hydrogen production by direct sun light from sul-
               fide/sulfite solution, Int. J. Hydrog. Energy 27 (2002) 363–367.
           [83]  K. Lee, W.S. Nam, G.Y. Han, Photocatalytic water-splitting in alkaline solution using
               redox mediator. 1: parameter study, Int. J. Hydrog. Energy 29 (2004) 1343–1347.
           [84]  G.R. Bamwenda, H. Arakawa, The photoinduced evolution of suspension O 2  and H 2
                                                      4+
                                                          3+
               from a WO 3  aqueous suspension in the presence of Ce /Ce , Sol. Energy Mater. Sol.
               Cells 70 (2001) 1–14.
           [85]  M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments
               in photocatalytic water-splitting using TiO 2  for hydrogen production, Renew. Sust.
               Energ. Rev. 11 (2007) 401–425.
           [86]  J. Kim, D.W. Hwang, H.G. Kim, S.W. Bae, J.S. Lee, W. Li, S.H. Oh, Highly efficient
               overall water splitting through optimization of preparation and operation conditions of
               layered perovskite photocatalysts, Top. Catal. 35 (3–4) (2005) 295–303.
           [87]  H. Kato, K. Asakura, A. Kudo, Highly efficient water splitting into H 2  and O 2  over
                 lanthanum-doped NaTaO 3  photocatalysts with high crystallinity and surface nanostruc-
               ture, J. Am. Chem. Soc. 125 (2003) 3082–3089.
           [88]  D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, S. Shen, G. Liu, X. Hu, X. Zhang,
               K. Zhang, L. Ma, P. Guo, Efficient solar hydrogen production by photocatalytic water
               splitting: from fundamental study to pilot demonstration, Int. J. Hydrog. Energy 35
               (2010) 7087–7097.
           [89]  J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans,
               D. Blake, Renewable hydrogen production, Int. J. Energy Res. 32 (5) (2007) 379–407.
           [90]  M. Bowker, Photocatalytic hydrogen production and oxygenate photoreforming, Catal.
               Lett. 142 (2012) 923–929.
           [91]  J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects
               and  challenges  in  selective  transformations  of  biomass-derived  compounds,  Chem.
               Soc. Rev. 43 (2014) 765–778.
           [92]  J.C.  Colmenares, A.  Magdziarz,  M.A.  Aramendia, A.  Marinas,  J.M.  Marinas,
               F.J. Urbano, J.A. Navio, Influence of the strong metal support interaction effect (SMSI)
               of Pt/TiO 2  and Pd/TiO 2  systems in the photocatalytic biohydrogen production from
               glucose solution, Catal. Commun. 16 (2011) 1–6.
           [93]  M. Ilie, B. Cojocaru, V.I. Parvulescu, H. Garcia, Improving TiO 2  activity in photo-
               production of hydrogen from sugar industry wastewaters, Int. J. Hydrog. Energy 36
               (2011) 15509–15518.
           [94]  S. Pilkenton, S.J. Hwang, D. Raftery, Ethanol photocatalysis on TiO 2 -coated optical
               microfiber, supported monolayer, and powdered catalysts: an in situ NMR study, J.
               Phys. Chem. B 103 (1999) 11152–11160.
   221   222   223   224   225   226   227   228   229   230   231