Page 226 - Multifunctional Photocatalytic Materials for Energy
P. 226
210 Multifunctional Photocatalytic Materials for Energy
[77] R.M. Navarro, F. Del Valle, J.A. Villoria de la Mano, M.C. Alvarez-Galvan,
J.L.G. Fierro, Photocatalytic water splitting under visible light: concept and catalysts
development, Adv. Chem. Eng.-Progr. Photocatal. React. Eng. 36 (2009) 111–143.
[78] R. Luque, A.M. Balu, Producing fuels and fine chemicals from biomass using nanoma-
terials, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2013.
[79] T. Takata, K. Domen, Defect engineering of photocatalysts by doping of aliovalent
metal cations for efficient water splitting, J. Phys. Chem. C (45) (2009) 19386–19388.
[80] Y. Li, G. Chen, Q. Wang, X. Wang, A. Zhou, Z. Shen, Hierarchical ZnS-In 2 S 3 -CuS
nanospheres with nanoporous structure: Facile synthesis, growth mechanism, and ex-
cellent photocatalytic activity, Adv. Funct. Mater. 20 (2010) 3390–3398.
[81] S. Boumaza, A. Boudjemaa, A. Bouguelia, R. Bouarab, M. Trari, Visible light induced
hydrogen evolution on new hetero-system ZnFe 2 O 4 /SrTiO 3 , Appl. Energy 87 (2010)
2230–2236.
[82] A. Koca, M. Sahin, Photocatalytic hydrogen production by direct sun light from sul-
fide/sulfite solution, Int. J. Hydrog. Energy 27 (2002) 363–367.
[83] K. Lee, W.S. Nam, G.Y. Han, Photocatalytic water-splitting in alkaline solution using
redox mediator. 1: parameter study, Int. J. Hydrog. Energy 29 (2004) 1343–1347.
[84] G.R. Bamwenda, H. Arakawa, The photoinduced evolution of suspension O 2 and H 2
4+
3+
from a WO 3 aqueous suspension in the presence of Ce /Ce , Sol. Energy Mater. Sol.
Cells 70 (2001) 1–14.
[85] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments
in photocatalytic water-splitting using TiO 2 for hydrogen production, Renew. Sust.
Energ. Rev. 11 (2007) 401–425.
[86] J. Kim, D.W. Hwang, H.G. Kim, S.W. Bae, J.S. Lee, W. Li, S.H. Oh, Highly efficient
overall water splitting through optimization of preparation and operation conditions of
layered perovskite photocatalysts, Top. Catal. 35 (3–4) (2005) 295–303.
[87] H. Kato, K. Asakura, A. Kudo, Highly efficient water splitting into H 2 and O 2 over
lanthanum-doped NaTaO 3 photocatalysts with high crystallinity and surface nanostruc-
ture, J. Am. Chem. Soc. 125 (2003) 3082–3089.
[88] D. Jing, L. Guo, L. Zhao, X. Zhang, H. Liu, M. Li, S. Shen, G. Liu, X. Hu, X. Zhang,
K. Zhang, L. Ma, P. Guo, Efficient solar hydrogen production by photocatalytic water
splitting: from fundamental study to pilot demonstration, Int. J. Hydrog. Energy 35
(2010) 7087–7097.
[89] J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans,
D. Blake, Renewable hydrogen production, Int. J. Energy Res. 32 (5) (2007) 379–407.
[90] M. Bowker, Photocatalytic hydrogen production and oxygenate photoreforming, Catal.
Lett. 142 (2012) 923–929.
[91] J.C. Colmenares, R. Luque, Heterogeneous photocatalytic nanomaterials: prospects
and challenges in selective transformations of biomass-derived compounds, Chem.
Soc. Rev. 43 (2014) 765–778.
[92] J.C. Colmenares, A. Magdziarz, M.A. Aramendia, A. Marinas, J.M. Marinas,
F.J. Urbano, J.A. Navio, Influence of the strong metal support interaction effect (SMSI)
of Pt/TiO 2 and Pd/TiO 2 systems in the photocatalytic biohydrogen production from
glucose solution, Catal. Commun. 16 (2011) 1–6.
[93] M. Ilie, B. Cojocaru, V.I. Parvulescu, H. Garcia, Improving TiO 2 activity in photo-
production of hydrogen from sugar industry wastewaters, Int. J. Hydrog. Energy 36
(2011) 15509–15518.
[94] S. Pilkenton, S.J. Hwang, D. Raftery, Ethanol photocatalysis on TiO 2 -coated optical
microfiber, supported monolayer, and powdered catalysts: an in situ NMR study, J.
Phys. Chem. B 103 (1999) 11152–11160.