Page 225 - Multifunctional Photocatalytic Materials for Energy
P. 225

Metal-based semiconductor nanomaterials for photocatalysis        209

             [61]  Y. Chen, S. Zhao, X. Wang, Q. Peng, R. Lin, Y. Wang, R. Shen, X. Cao, L. Zhang,
                  G. Zhou, et al., Synergetic integration of Cu 1.94 S-Zn x Cd 1-x S heteronanorods for en-
                  hanced visible-light-driven photocatalytic hydrogen production, J. Am. Chem. Soc.
                  138 (2016) 4286–4289.
             [62]  D. Jiang, Z. Sun, H. Jia, D. Lu, P.A. Du, A cocatalyst-free CdS nanorod/ZnS nanopar-
                  ticle composite for high-performance visible-light-driven hydrogen production from
                  water, J. Mater. Chem. A. Mater. Energy Sustain. 4 (2016) 675–683.
             [63]  M.L.  Tang, D.C.  Grauer, B.  Lassalle-Kaiser, V.K.  Yachandra, L.  Amirav, J.  Yano,
                  J.R.  Long, A.P.  Alivisatos, Structural and electronic study of an amorphous MoS 3
                    hydrogen-generation catalyst on a quantum-controlled photosensitizer, Angew. Chem.
                  Int. Ed. 50 (2011) 10203–10207.
             [64]  Y. Liang, L. Zhai, X. Zhao, D. Xu, Band-Gap engineering of semiconductor nanowires
                  through composition modulation, J. Phys. Chem. B 109 (2005) 7120–7123.
             [65]  Y.J. Yuan, D.Q. Chen, Y.W. Huang, Z.T. Yu, J.S. Zhong, T.T. Chen, W.G. Tu, Z.J. Guan,
                  D.P. Cao, et al., MoS 2  nanosheet-modified CuInS 2  photocatalyst for visible-light-driven
                  hydrogen production from water, ChemSusChem 9 (2016) 1003–1009.
             [66]  A.A.  Dubale,  C.J.  Pan,  A.G.  Tamirat,  H.M.  Chen,  W.N.  Su,  C.H.  Chen,  J.  Rick,
                  D.W. Ayele, B.A. Aragaw, J.F. Lee, J.W. Yang, B.J. Hwang, Heterostructured Cu 2 O/
                  CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical
                  water reduction, J. Mater. Chem. A 3 (2015) 12482–12499.
             [67]  Z. Sun, H. Chen, L. Zhang, D. Lu, P. Du, Enhanced photocatalytic H 2  production on
                  cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst, J. Mater.
                  Chem. A 4 (2016) 13289–13295.
             [68]  K. Maeda, D. Lu, K. Domen, Solar-driven Z-scheme water splitting using modified
                  BaZrO 3 −BaTaO 2 N solid solutions as photocatalysts, ACS Catal. 3 (2013) 1026−1033.
             [69]  S.S.K. Ma, K. Maeda, T. Hisatomi, M. Tabata, A. Kudo, K. Domen, A redox- mediator-
                  free solar-driven Z-scheme water-splitting system consisting of modified Ta 3 N 5  as an
                  oxygen-evolution photocatalyst, Chem. A Eur. J. 19 (2013) 7480–7486.
             [70]  T. Matoba, K. Maeda, K. Domen, Activation of BaTaO 2 N photocatalyst for enhanced
                  non-sacrificial hydrogen evolution from water under visible light by forming a solid
                  solution with BaZrO 3 , Chem. A Eur. J. 17 (2011) 14731–14735.
             [71]  Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, Solar water splitting using powdered pho-
                  tocatalysts driven by Z-schematic interparticle electron transfer without an electron
                  mediator, J. Phys. Chem. C 113 (2009) 17536–17542.
             [72]  Y.  Pihosh, I.  Turkevych, K.  Mawatari, J.  Uemura, Y.  Kazoe, S.  Kosar, K.  Makita,
                  T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo, T. Kitamori, Photocatalytic gen-
                  eration of hydrogen by core-shell WO 3 /BiVO 4  nanorods with ultimate water splitting
                  efficiency, Sci. Rep. 5 (2015) 11141–11151.
             [73]  X.Y. Wang, L.C. Yin, G. Liu, Light irradiation-assisted synthesis of ZnO–CdS/reduced
                  graphene oxide heterostructured sheets for efficient photocatalytic H 2  evolution, Chem.
                  Commun. 50 (2014) 3460–3463.
             [74]  J.G. Hou, Z. Wang, W.B. Kan, S.Q. Jiao, H.M. Zhu, R.V. Kumar, Efficient visible-
                  light-driven photocatalytic hydrogen production using CdS@TaON core–shell com-
                  posites coupled with graphene oxide nanosheets, J. Mater. Chem. 22 (2012) 7291–7299.
             [75]  T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic wa-
                  ter splitting—the untamed dream: a review of recent advances, Molecules 21 (2016)
                  900–929.
             [76]  X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen
                  generation, Chem. Rev. 110 (2010) 6503–6570.
   220   221   222   223   224   225   226   227   228   229   230