Page 225 - Multifunctional Photocatalytic Materials for Energy
P. 225
Metal-based semiconductor nanomaterials for photocatalysis 209
[61] Y. Chen, S. Zhao, X. Wang, Q. Peng, R. Lin, Y. Wang, R. Shen, X. Cao, L. Zhang,
G. Zhou, et al., Synergetic integration of Cu 1.94 S-Zn x Cd 1-x S heteronanorods for en-
hanced visible-light-driven photocatalytic hydrogen production, J. Am. Chem. Soc.
138 (2016) 4286–4289.
[62] D. Jiang, Z. Sun, H. Jia, D. Lu, P.A. Du, A cocatalyst-free CdS nanorod/ZnS nanopar-
ticle composite for high-performance visible-light-driven hydrogen production from
water, J. Mater. Chem. A. Mater. Energy Sustain. 4 (2016) 675–683.
[63] M.L. Tang, D.C. Grauer, B. Lassalle-Kaiser, V.K. Yachandra, L. Amirav, J. Yano,
J.R. Long, A.P. Alivisatos, Structural and electronic study of an amorphous MoS 3
hydrogen-generation catalyst on a quantum-controlled photosensitizer, Angew. Chem.
Int. Ed. 50 (2011) 10203–10207.
[64] Y. Liang, L. Zhai, X. Zhao, D. Xu, Band-Gap engineering of semiconductor nanowires
through composition modulation, J. Phys. Chem. B 109 (2005) 7120–7123.
[65] Y.J. Yuan, D.Q. Chen, Y.W. Huang, Z.T. Yu, J.S. Zhong, T.T. Chen, W.G. Tu, Z.J. Guan,
D.P. Cao, et al., MoS 2 nanosheet-modified CuInS 2 photocatalyst for visible-light-driven
hydrogen production from water, ChemSusChem 9 (2016) 1003–1009.
[66] A.A. Dubale, C.J. Pan, A.G. Tamirat, H.M. Chen, W.N. Su, C.H. Chen, J. Rick,
D.W. Ayele, B.A. Aragaw, J.F. Lee, J.W. Yang, B.J. Hwang, Heterostructured Cu 2 O/
CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical
water reduction, J. Mater. Chem. A 3 (2015) 12482–12499.
[67] Z. Sun, H. Chen, L. Zhang, D. Lu, P. Du, Enhanced photocatalytic H 2 production on
cadmium sulfide photocatalysts using nickel nitride as a novel cocatalyst, J. Mater.
Chem. A 4 (2016) 13289–13295.
[68] K. Maeda, D. Lu, K. Domen, Solar-driven Z-scheme water splitting using modified
BaZrO 3 −BaTaO 2 N solid solutions as photocatalysts, ACS Catal. 3 (2013) 1026−1033.
[69] S.S.K. Ma, K. Maeda, T. Hisatomi, M. Tabata, A. Kudo, K. Domen, A redox- mediator-
free solar-driven Z-scheme water-splitting system consisting of modified Ta 3 N 5 as an
oxygen-evolution photocatalyst, Chem. A Eur. J. 19 (2013) 7480–7486.
[70] T. Matoba, K. Maeda, K. Domen, Activation of BaTaO 2 N photocatalyst for enhanced
non-sacrificial hydrogen evolution from water under visible light by forming a solid
solution with BaZrO 3 , Chem. A Eur. J. 17 (2011) 14731–14735.
[71] Y. Sasaki, H. Nemoto, K. Saito, A. Kudo, Solar water splitting using powdered pho-
tocatalysts driven by Z-schematic interparticle electron transfer without an electron
mediator, J. Phys. Chem. C 113 (2009) 17536–17542.
[72] Y. Pihosh, I. Turkevych, K. Mawatari, J. Uemura, Y. Kazoe, S. Kosar, K. Makita,
T. Sugaya, T. Matsui, D. Fujita, M. Tosa, M. Kondo, T. Kitamori, Photocatalytic gen-
eration of hydrogen by core-shell WO 3 /BiVO 4 nanorods with ultimate water splitting
efficiency, Sci. Rep. 5 (2015) 11141–11151.
[73] X.Y. Wang, L.C. Yin, G. Liu, Light irradiation-assisted synthesis of ZnO–CdS/reduced
graphene oxide heterostructured sheets for efficient photocatalytic H 2 evolution, Chem.
Commun. 50 (2014) 3460–3463.
[74] J.G. Hou, Z. Wang, W.B. Kan, S.Q. Jiao, H.M. Zhu, R.V. Kumar, Efficient visible-
light-driven photocatalytic hydrogen production using CdS@TaON core–shell com-
posites coupled with graphene oxide nanosheets, J. Mater. Chem. 22 (2012) 7291–7299.
[75] T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic wa-
ter splitting—the untamed dream: a review of recent advances, Molecules 21 (2016)
900–929.
[76] X. Chen, S. Shen, L. Guo, S.S. Mao, Semiconductor-based photocatalytic hydrogen
generation, Chem. Rev. 110 (2010) 6503–6570.