Page 228 - Multifunctional Photocatalytic Materials for Energy
P. 228
212 Multifunctional Photocatalytic Materials for Energy
[112] R. Lucchetti, L. Onotri, L. Clarizia, F. Di Natale, I. Di Somma, R. Andreozzi,
R. Marotta, Removal of nitrate and simultaneous hydrogen generation through pho-
tocatalytic reforming of glycerol over “in situ” prepared zero-valent nano copper/P25,
Appl. Catal. B Environ. 202 (2017) 539–549.
[113] L. Clarizia, I. Di Somma, R. Marotta, P. Minutolo, R. Villamaina, R. Andreozzi,
Photocatalytic reforming of formic acid for hydrogen production in aqueous solutions
containing cupric ions and TiO 2 suspended nanoparticles under UV–simulated solar
radiation, Appl. Catal. A Gen. 518 (2016) 181–188.
[114] D.I. Kondarides, V.M. Daskalaki, A. Patsoura, X.E. Verykios, Hydrogen production
by photo-induced reforming of biomass components and derivatives at ambient condi-
tions, Catal. Lett. 122 (2008) 26–32.
[115] K. Domen, J.N. Kondo, M. Hara, T. Takata, Photo- and mechano-catalytic overall wa-
ter splitting reactions to form hydrogen and oxygen on heterogeneous catalysts, Bull.
Chem. Soc. Jpn. 73 (2000) 1307–1331.
[116] Y. Li, G. Chen, H. Zhang, Z. Li, J. Sun, Electronic structure and photocatalytic proper-
ties of ABi 2 Ta 2 O 9 (A =Ca, Sr, Ba), J. Solid State Chem. 181 (2008) 2653–2659.
[117] T. Simon, N. Bouchonville, M.J. Berr, A.R. Vaneski, A. Adrović, D. Volbers,
R. Wyrwich, M. Döblinger, A.S. Susha, A.L. Rogach, F. Jäckel, J.K. Stolarczyk,
J. Feldmann, Redox shuttle mechanism enhances photocatalytic H 2 generation on Ni-
decorated CdS nanorods, Nat. Mater. 13 (2014) 1013–1018.
[118] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient
visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated
graphene nanosheets, J. Am. Chem. Soc. 133 (2011) 10878–10884.
[119] L. Amirav, A.P. Alivisatos, Photocatalytic hydrogen production with tunable nanorod
heterostructures, J. Phys. Chem. Lett. 1 (2010) 1051–1054.
[120] K.M. Parida, S. Martha, D.P. Das, N. Biswal, Facile fabrication of hierarchical
N-doped GaZn mixed oxides for water splitting reactions, J. Mater. Chem. 20 (2010)
7144–7149.
[120a] M.R. Gholipour, C.T. Dinh, F. Béland, T.O. Do, Nanocomposite heterojunctions as
sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale
7 (2015) 8187–8208.
[121] Z. Zhang, P.A. Maggard, Investigation of photocatalytically-active hydrated forms of
amorphous titania,TiO2·n H2O, J. Photochem. Photobiol. A Chem. 186 (2007) 8–13.
[122] O. Ola, M.M. Maroto-Valer, Review of material design and reactor engineering on
TiO 2 photocatalysis for CO 2 reduction, J. Photochem. Photobiol. C: Photochem. Rev.
24 (2015) 16–42.
[123] S.P. Meshram, P.V. Adhayak, U.P. Mulik, D.P. Amalnerkar, Facile synthesis of CuO
nanomorphs and their morphology dependent sunlight driven photocatalytic proper-
ties, Chem. Eng. J. 204–206 (2012) 158–168.
[124] U. Muller, Symmetry, in: Inorganic Structural Chemistry, John Wiley and Sons, Ltd,
Chichester, 2007.
2+
[125] G. Liu, X. Zhang, Y. Xu, X. Niu, L. Zheng, X. Ding, The preparation of Zn -doped
TiO 2 nanoparticles by sol–gel and solid phase reaction methods respectively and their
photocatalytic activities, Chemosphere 59 (2005) 1367–1371.
[126] Q. Xiao, J. Zhang, C. Xiao, Z. Si, X. Tan, Solar photocatalytic degradation of meth-
ylene blue in carbon-doped TiO 2 nanoparticles suspension, Sol. Energy 82 (2008)
706–713.
[127] H. Kato, A. Kudo, Water splitting into H 2 and O 2 on alkali tantalate photocatalysts
ATaO 3 (A=Li, Na and K), J. Phys. Chem. B 105 (2001) 4285–4292.