Page 224 - Multifunctional Photocatalytic Materials for Energy
P. 224
208 Multifunctional Photocatalytic Materials for Energy
[42] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, X. Wang, Semiconductor
heterojunction photocatalysts: design, construction, and photocatalytic performances,
Chem. Soc. Rev. 43 (2014) 5234–5244.
[43] B. Sun, A.V. Vorontsov, P.G. Smirniotis, Role of platinum deposited on TiO 2 in phenol
photocatalytic oxidation, J. Phys. Chem. B 19 (2003) 3151–3156.
[44] P. Deak, B. Aradi, T. Frauenheim, Band lineup and charge carrier separation in mixed
rutile-anatase systems, J. Phys. Chem. C 115 (2011) 3443–3446.
[45] Y. Mi, Y. Weng, Band alignment and controllable electron migration between rutile and
anatase TiO 2 , Sci Rep 5 (2015) 11482.
[46] D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley,
C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal,
P.S. Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO 2 , Nat.
Mater. 12 (2013) 798–801.
[47] W.N. Zhao, S.C. Zhu, Y.F. Li, Z.P. Liu, Three-phase junction for modulating electron–
hole migration in anatase–rutile photocatalysts, Chem. Sci. 6 (2015) 3483–3494.
[48] X. Wang, Q. Xu, M.R. Li, S. Shen, X.L. Wang, Y.C. Wang, Z.C. Feng, Y.J. Shi,
H.X. Han, C. Li, Photocatalytic overall water splitting promoted by an α–β phase junc-
tion on Ga 2 O 3 , Angew. Chem. Int. Ed. 51 (2012) 13089–13092.
[49] P. Wang, P.R. Chen, A. Kostka, R. Marschall, M. Wark, Control of phase coexistence
in calcium tantalate composite photocatalysts for highly efficient hydrogen production,
Chem. Mater. 25 (2013) 4739–4745.
[50] O.M. Ishchenko, V. Rogé, G. Lamblin, D. Lenoble, TiO 2 - and ZnO-based materi-
als for photocatalysis: material properties, device architecture and emerging con-
cepts, in: Semiconductor Photocatalysis—Materials, Mechanisms and Applications,
InTechOpen Ed, Lenoble, 2016.
[51] K. Maeda, Z-scheme water splitting using two different semiconductor photocatalysts,
ACS Catal. 3 (2013) 1486−1503.
[52] X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifica-
tions, and applications, Chem. Rev. 107 (2007) 2891–2959.
[53] A.O. Ibhadon, P. Fitzpatrick, Heterogeneous photocatalysis: recent advances and appli-
cations, Catalysts 3 (2013) 189–218.
[54] J. Low, B. Cheng, J. Yu, Surface modification and enhanced photocatalytic CO 2 reduc-
tion performance of TiO 2 : a review, Appl. Surf. Sci. 392 (2017) 658–686.
[55] O. Ola, M.M. Maroto-Valer, Synthesis, characterization and visible light photocatalytic activ-
ity of metal based TiO 2 monoliths for CO 2 reduction, Chem. Eng. J. 283 (2016) 1244–1253.
[56] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop,
J.W.J. Hamilton, J.A. Byrne, K. O’Shea, M.H. Entezari, D.D. Dionysiou, A review on
the visible light active titanium dioxide photocatalysts for environmental applications,
Appl. Catal. B Environ. 125 (2012) 331–349.
[57] A. Zielinska-Jurek, Progress, challenge, and perspective of bimetallic TiO 2 -based pho-
tocatalysts, J. Nanomater. 2014 (2014) 1–17.
[58] R. Abe, K. Sayama, K. Domen, H. Arakawa, A new type of water splitting system
− −
composed of two different TiO 2 photocatalysts (anatase, rutile) and a IO 3 /I shuttle
redox mediator, Chem. Phys. Lett. 344 (2001) 339–344.
[59] A. Kudo, Development of photocatalyst materials for water splitting, Int. J. Hydrog.
Energy 31 (2006) 197–202.
[60] H. Zhou, J. Pan, L. Ding, Y. Tang, J. Ding, Q. Guo, T. Fan, D. Zhang, Biomass-derived
hierarchical porous CdS/M/TiO 2 (M = Au, Ag, pt, pd) ternary heterojunctions for pho-
tocatalytic hydrogen evolution, Int. J. Hydrog. Energy 39 (2014) 16293–16301.