Page 223 - Multifunctional Photocatalytic Materials for Energy
P. 223

Metal-based semiconductor nanomaterials for photocatalysis        207

             [25]  J. Yu, L. Qi, M. Jaroniec, Hydrogen production by photocatalytic water splitting over
                  Pt/TiO 2  nanosheets with exposed (001) facets, J. Phys. Chem. C 114 (30) (2010)
                  13118–13125.
             [26]  A.A. Melvin, K. Illath, T. Das, T. Raja, S. Bhattacharyya, C.S. Gopinath, M–Au/TiO 2
                  (M = Ag, Pd, and Pt) nanophotocatalyst for overall solar water splitting: role of inter-
                  faces, Nanoscale 7 (2015) 13477–13488.
             [27]  J.Y. Park, J.R. Renzas, B.B. Hsu, G.A. Somorjai, Interfacial and chemical properties
                  of Pt/TiO 2 , Pd/TiO 2 , and Pt/GaN catalytic nanodiodes influencing hot electron flow, J.
                  Phys. Chem. C 111 (2007) 15331–15336.
             [28]  V. Subramanian, E.E. Wolf, P. Kamat, Catalysis with TiO 2 /gold nanocomposites: effect
                  of metal particle size on the Fermi level equilibration, J. Am. Chem. Soc. 126 (2004)
                  4943–4950.
             [29]  J.J. Chen, J.C.S. Wu, P.C. Wu, D.P. Tsai, Plasmonic photocatalyst for H 2  evolution in
                  photocatalytic water splitting, J. Phys. Chem. C 115 (2011) 210–216.
             [30]  X. Zhou, G. Liu, J. Yu, W. Fan, Surface plasmon resonance-mediated photocataly-
                  sis by noble metal-based composites under visible light, J. Mater. Chem. 22 (2012)
                  21337–21354.
             [31]  X. Zhang, Y.L. Chen, R.S. Liu, D.P. Tsai, Plasmonic photocatalysis, Rep. Prog. Phys.
                  76 (2013) 046401.
             [32]  S.C.  Warren, E.  Thimsen, Plasmonic solar water splitting, Energy Environ. Sci. 5
                  (2012) 5133–5146.
             [33]  A. Bazzo, A. Urakawa, Understanding synergetic effects of Zn and Rh–Cr promotion
                  to wide-bandgap Ga, Ta and Ti oxides in photocatalytic water splitting, Catal. Sci.
                  Technol. 6 (2016) 4243–4253.
             [34]  M. Kitano, K. Tsujimaru, M. Anpo, Hydrogen production using highly active titanium
                  oxide-based photocatalysts, Top. Catal. 49 (2008) 4–17.
             [35]  A. Primo, T. Marino, A. Corma, R. Molinari, H. Garcia, Efficient visible light photocat-
                  alytic water splitting by minute amounts of gold supported on nanoparticulate CeO 2  ob-
                  tained by a biopolymer templating method, J. Am. Chem. Soc. 133 (2012) 6930–6933.
             [36]  Q. Wang, T. Hisatomi, Q. Jia, H. Tokudome, M. Zhong, C. Wang, Z. Pan, T. Takata,
                  M. Nakabayashi, N. Shibata, et al., Scalable water splitting on particulate photocata-
                  lyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1%, Nat.
                  Mater. 15 (2016) 611–615.
             [37]  Q. Wang, T. Hisatomi, S.S.K. Ma, Y. Li, K. Domen, Core/shell structured La- and
                  Rh-codoped SrTiO 3  as a hydrogen evolution photocatalyst in Z-scheme overall water
                  splitting under visible light irradiation, Chem. Mater. 26 (2014) 4144–4150.
             [38]  S. Hara, M. Yoshimizu, S. Tanigawa, L. Ni, B. Ohtani, H. Irie, Hydrogen and oxygen
                  evolution photocatalysts synthesized from strontium titanate by controlled doping and
                  their performance in two-step overall water splitting under visible light, J. Phys. Chem.
                  C 116 (2012) 17458–17463.
             [39]  L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang, Y. Li, X. Lu, D. Wei, G. Feng, Q. Yu,
                  X. Cai, J. Zhao, Z. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, J. Bao, Efficient
                  solar water-splitting using a nanocrystalline CoO photocatalyst, Nat. Nanotechnol. 9
                  (2014) 69–73.
             [40]  H.G. Kim, D.W. Hwang, J.S. Lee, An undoped, single-phase oxide photocatalyst work-
                  ing under visible light, J. Am. Chem. Soc. 126 (2004) 8912–8913.
             [41]  Y. Xu, Y. Huang, B. Zhang, Rational design of semiconductor-based photocatalysts
                  for advanced photocatalytic hydrogen production: the case of cadmium chalcogenides,
                  Inorg. Chem. Front. 3 (2016) 591–615.
   218   219   220   221   222   223   224   225   226   227   228