Page 53 - Multifunctional Photocatalytic Materials for Energy
P. 53
42 Multifunctional Photocatalytic Materials for Energy
[3] L. Yang, H. Zhou, T. Fan, D. Zhang, Semiconductor photocatalysts for water oxidation:
current status and challenges, Phys. Chem. Chem. Phys. 16 (2014) 6810–6826.
[4] J.W. Sun, D.K. Zhong, D.R. Gamelin, Composite photoanodes for photoelectrochemical
solar water splitting, Energy Environ. Sci. 3 (2010) 1252–1261.
[5] Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Photoelectrochemical cells for solar hydrogen
production: current state of promising photoelectrodes, methods to improve their prop-
erties, and outlook, Energy Environ. Sci. 6 (2013) 347–370.
[6] N. Armaroli, V. Balzani, Solar electricity and solar fuels: status and perspectives in the
context of the energy transition, Chem. Eur. J. 22 (2016) 32–57.
[7] M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338–344.
[8] B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, Water oxidation
at hematite photoelectrodes: the role of surface states, J. Am. Chem. Soc. 134 (2012)
4294–4302.
[9] M.N. Shaddad, M.A. Ghanem, A.M. Al-Mayouf, S. Gimenez, J. Bisquert, I. Herraiz-
Cardona, Cooperative catalytic effect of ZrO 2 and α-Fe 2 O 3 nanoparticles on BiVO 4 pho-
toanodes for enhanced photoelectrochemical water splitting, ChemSusChem 9 (2016)
2779–2783.
[10] T.H. Jeon, W. Choi, H. Park, Cobalt-phosphate complexes catalyze the photoelectrochemi-
cal water oxidation of BiVO 4 electrodes, Phys. Chem. Chem. Phys. 13 (2011) 21392–21401.
[11] Gurudayal, D. Jeong, K. Jin, H.-Y. Ahn, P.P. Boix, F.F. Abdi, et al., Highly active
MnO catalysts integrated onto Fe 2 O 3 nanorods for efficient water splitting, Adv. Mater.
Interfaces 3 (2016) 1600176.
[12] T. Li, J. He, B. Peña, C.P. Berlinguette, Curing BiVO 4 photoanodes with ultraviolet light
enhances photoelectrocatalysis, Angew. Chem. Int. Ed. 55 (2016) 1769–1772.
[13] M. Sarnowska, K. Bienkowski, P.J. Barczuk, R. Solarska, J. Augustynski, Highly efficient
and stable solar water splitting at (Na)WO 3 photoanodes in acidic electrolyte assisted by
non-noble metal oxygen evolution catalyst, Adv. Energy Mater. 6 (2016) 1600526.
[14] M.T. Mayer, Y. Lin, G. Yuan, D. Wang, Forming heterojunctions at the nanoscale for
improved photoelectrochemical water splitting by semiconductor materials: case studies
on hematite, Acc. Chem. Res. 46 (2013) 1558–1566.
[15] J. Quiñonero, T. Lana-Villarreal, R. Gómez, Improving the photoactivity of bismuth va-
nadate thin film photoanodes through doping and surface modification strategies, Appl.
Catal. B 194 (2016) 141–149.
[16] C.X. Guo, Y. Dong, H.B. Yang, C.M. Li, Graphene quantum dots as a green sensitizer to
functionalize ZnO nanowire arrays on F-doped SnO 2 glass for enhanced photoelectro-
chemical water splitting, Adv. Energy Mater. 3 (2013) 997–1003.
[17] S. Hernández, V. Cauda, A. Chiodoni, S. Dallorto, A. Sacco, D. Hidalgo, et al.,
Optimization of 1D ZnO@TiO 2 core–shell nanostructures for enhanced photoelectro-
chemical water splitting under solar light illumination, ACS Appl. Mater. Interfaces
6 (2014) 12153–12167.
[18] S.C. Warren, E. Thimsen, Plasmonic solar water splitting, Energy Environ. Sci. 5 (2012)
5133–5146.
[19] S. Hilaire, M.J. Suess, N. Kranzlin, K. Bienkowski, R. Solarska, J. Augustynski,
M. Niederberger, Microwave-assisted nonaqueous synthesis of WO 3 nanoparticles
for crystallographically oriented photoanodes for water splitting, J. Mater. Chem. A
2 (2014) 20530–20537.
[20] F.M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parisse, C. Maccato, et al., Efficient
water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces, Nat.
Chem. 2 (2010) 826–831.