Page 53 - Multifunctional Photocatalytic Materials for Energy
P. 53

42                                 Multifunctional Photocatalytic Materials for Energy

           [3]  L. Yang, H. Zhou, T. Fan, D. Zhang, Semiconductor photocatalysts for water oxidation:
              current status and challenges, Phys. Chem. Chem. Phys. 16 (2014) 6810–6826.
           [4]  J.W. Sun, D.K. Zhong, D.R. Gamelin, Composite photoanodes for photoelectrochemical
              solar water splitting, Energy Environ. Sci. 3 (2010) 1252–1261.
           [5]  Z. Li, W. Luo, M. Zhang, J. Feng, Z. Zou, Photoelectrochemical cells for solar hydrogen
              production: current state of promising photoelectrodes, methods to improve their prop-
              erties, and outlook, Energy Environ. Sci. 6 (2013) 347–370.
           [6]  N. Armaroli, V. Balzani, Solar electricity and solar fuels: status and perspectives in the
              context of the energy transition, Chem. Eur. J. 22 (2016) 32–57.
           [7]  M. Grätzel, Photoelectrochemical cells, Nature 414 (2001) 338–344.
           [8]  B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, Water oxidation
              at hematite photoelectrodes: the role of surface states, J. Am. Chem. Soc. 134 (2012)
              4294–4302.
           [9]  M.N.  Shaddad, M.A.  Ghanem,  A.M.  Al-Mayouf, S.  Gimenez, J.  Bisquert, I.  Herraiz-
              Cardona, Cooperative catalytic effect of ZrO 2  and α-Fe 2 O 3  nanoparticles on BiVO 4  pho-
              toanodes for enhanced photoelectrochemical water splitting, ChemSusChem 9 (2016)
              2779–2783.
           [10]  T.H. Jeon, W. Choi, H. Park, Cobalt-phosphate complexes catalyze the photoelectrochemi-
              cal water oxidation of BiVO 4  electrodes, Phys. Chem. Chem. Phys. 13 (2011) 21392–21401.
           [11]  Gurudayal, D.  Jeong, K.  Jin, H.-Y.  Ahn, P.P.  Boix, F.F.  Abdi, et  al., Highly active
              MnO catalysts integrated onto Fe 2 O 3  nanorods for efficient water splitting, Adv. Mater.
              Interfaces 3 (2016) 1600176.
           [12]  T. Li, J. He, B. Peña, C.P. Berlinguette, Curing BiVO 4  photoanodes with ultraviolet light
              enhances photoelectrocatalysis, Angew. Chem. Int. Ed. 55 (2016) 1769–1772.
           [13]  M. Sarnowska, K. Bienkowski, P.J. Barczuk, R. Solarska, J. Augustynski, Highly efficient
              and stable solar water splitting at (Na)WO 3  photoanodes in acidic electrolyte assisted by
              non-noble metal oxygen evolution catalyst, Adv. Energy Mater. 6 (2016) 1600526.
           [14]  M.T. Mayer, Y. Lin, G. Yuan, D. Wang, Forming heterojunctions at the nanoscale for
              improved photoelectrochemical water splitting by semiconductor materials: case studies
              on hematite, Acc. Chem. Res. 46 (2013) 1558–1566.
           [15]  J. Quiñonero, T. Lana-Villarreal, R. Gómez, Improving the photoactivity of bismuth va-
              nadate thin film photoanodes through doping and surface modification strategies, Appl.
              Catal. B 194 (2016) 141–149.
           [16]  C.X. Guo, Y. Dong, H.B. Yang, C.M. Li, Graphene quantum dots as a green sensitizer to
              functionalize ZnO nanowire arrays on F-doped SnO 2  glass for enhanced photoelectro-
              chemical water splitting, Adv. Energy Mater. 3 (2013) 997–1003.
           [17]  S.  Hernández,  V.  Cauda,  A.  Chiodoni,  S.  Dallorto,  A.  Sacco,  D.  Hidalgo,  et  al.,
              Optimization of 1D ZnO@TiO 2  core–shell nanostructures for enhanced photoelectro-
              chemical water splitting under solar light illumination, ACS Appl. Mater. Interfaces
              6 (2014) 12153–12167.
           [18]  S.C. Warren, E. Thimsen, Plasmonic solar water splitting, Energy Environ. Sci. 5 (2012)
              5133–5146.
           [19]  S.  Hilaire, M.J.  Suess, N.  Kranzlin, K.  Bienkowski, R.  Solarska, J.  Augustynski,
              M. Niederberger, Microwave-assisted nonaqueous synthesis of WO 3  nanoparticles
              for crystallographically oriented photoanodes for water splitting, J. Mater. Chem. A
              2 (2014) 20530–20537.
           [20]  F.M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parisse, C. Maccato, et al., Efficient
              water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces, Nat.
              Chem. 2 (2010) 826–831.
   48   49   50   51   52   53   54   55   56   57   58