Page 56 - Multifunctional Photocatalytic Materials for Energy
P. 56
Metal oxide electrodes for photo-activated water splitting 45
[57] H. Ishihara, G.K. Kannarpady, K.R. Khedir, J. Woo, S. Trigwell, A.S. Biris, A novel
tungsten trioxide (WO 3 )/ITO porous nanocomposite for enhanced photo-catalytic water
splitting, Phys. Chem. Chem. Phys. 13 (2011) 19553–19560.
[58] W. Chen, Y. Qiu, S. Yang, Branched ZnO nanostructures as building blocks of photoelectrodes
for efficient solar energy conversion, Phys. Chem. Chem. Phys. 14 (2012) 10872–10881.
[59] D.K. Bora, A. Braun, Solution processed transparent nanoparticulate ZnO thin film elec-
trode for photoelectrochemical water oxidation, RSC Adv. 4 (2014) 23562–23570.
[60] Y. Mao, Y. Cheng, J. Wang, H. Yang, M. Li, J. Chen, et al., Amorphous NiO electrocat-
alyst overcoated ZnO nanorod photoanodes for enhanced photoelectrochemical perfor-
mance, New J. Chem. 40 (2016) 107–112.
[61] M. Shao, F. Ning, M. Wei, D.G. Evans, X. Duan, Hierarchical nanowire arrays based on
ZnO core−layered double hydroxide shell for largely enhanced photoelectrochemical
water splitting, Adv. Funct. Mater. 24 (2014) 580–586.
[62] Y. Mao, H. Yang, J. Chen, J. Chen, Y. Tong, X. Wang, Significant performance enhance-
ment of ZnO photoanodes from Ni(OH) 2 electrocatalyst nanosheets overcoating, Nano
Energy 6 (2014) 10–18.
[63] C.X. Kronawitter, L. Vayssieres, S. Shen, L. Guo, D.A. Wheeler, J.Z. Zhang, et al.,
A perspective on solar-driven water splitting with all-oxide hetero-nanostructures,
Energy Environ. Sci. 4 (2011) 3889–3899.
[64] J.H. Montoya, L.C. Seitz, P. Chakthranont, A. Vojvodic, T.F. Jaramillo, J.K. Norskov,
Materials for solar fuels and chemicals, Nat. Mater. 16 (2017) 70–81.
[65] S. Hernández, G. Gerardi, K. Bejtka, A. Fina, N. Russo, Evaluation of the charge trans-
fer kinetics of spin-coated BiVO 4 thin films for sun-driven water photoelectrolysis,
Appl. Catal. B 190 (2016) 66–74.
[66] S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient con-
version of solar to chemical energy, Nat. Mater. 10 (2011) 911–921.
[67] G. Carraro, C. Maccato, A. Gasparotto, T. Montini, S. Turner, O.I. Lebedev, et al.,
Enhanced hydrogen production by photoreforming of renewable oxygenates through
nanostructured Fe 2 O 3 polymorphs, Adv. Funct. Mater. 24 (2014) 372–378.
[68] S. Xie, Q. Zhang, G. Liu, Y. Wang, Photocatalytic and photoelectrocatalytic reduction
of CO 2 using heterogeneous catalysts with controlled nanostructures, Chem. Commun.
52 (2016) 35–59.
[69] K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, et al.,
Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-
based colloidal approach, J. Am. Chem. Soc. 132 (2010) 7436–7444.
[70] M. Cornuz, M. Grätzel, K. Sivula, Preferential orientation in hematite films for solar
hydrogen production via water splitting, Chem. Vap. Deposition 16 (2010) 291–295.
[71] X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng, D. Wang, Improving hematite-based pho-
toelectrochemical water splitting with ultrathin TiO 2 by atomic layer deposition, ACS
Appl. Mater. Interfaces 6 (2014) 12005–12011.
[72] M.E.A. Warwick, K. Kaunisto, D. Barreca, G. Carraro, A. Gasparotto, C. Maccato,
et al., Vapor phase processing of α-Fe 2 O 3 photoelectrodes for water splitting: an insight
into the structure/property interplay, ACS Appl. Mater. Interfaces 7 (2015) 8667–8676.
[73] M. Marelli, A. Naldoni, A. Minguzzi, M. Allieta, T. Virgili, G. Scavia, et al., Hierarchical
hematite nanoplatelets for photoelectrochemical water splitting, ACS Appl. Mater.
Interfaces 6 (2014) 11997–12004.
[74] W.-H. Hung, T.-M. Chien, A.-Y. Lo, C.-M. Tseng, D. Li, Spatially controllable plasmon
enhanced water splitting photocurrent in Au/TiO 2 -Fe 2 O 3 cocatalyst system, RSC Adv.
4 (2014) 45710–45714.