Page 59 - Multifunctional Photocatalytic Materials for Energy
P. 59

48                                 Multifunctional Photocatalytic Materials for Energy

          [111]  M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, et al., N doping to ZnO nanorods for
              photoelectrochemical water splitting under visible light: engineered impurity distribu-
              tion and terraced band structure, Sci. Rep. 5 (2015) 12925.
          [112]  L. Yan, W. Zhao, Z. Liu, 1D ZnO/BiVO 4  heterojunction photoanodes for efficient pho-
              toelectrochemical water splitting, Dalton Trans. 45 (2016) 11346–11352.
          [113]  C.K. Chen, Y.-P. Shen, H.M. Chen, C.-J. Chen, T.-S. Chan, J.-F. Lee, et al., Quantum-
              dot-sensitized nitrogen-doped ZnO for efficient photoelectrochemical water splitting,
              Eur. J. Inorg. Chem. 2014 (2014) 773–779.
          [114]  S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, Transition metal oxide loaded
              ZnO nanorods: preparation, characterization and their UV–vis photocatalytic activities,
              Sep. Purif. Technol. 132 (2014) 378–387.
          [115]  C.-H. Hsu, D.-H. Chen, Photoresponse and stability improvement of ZnO nanorod array
              thin film as a single layer of photoelectrode for photoelectrochemical water splitting, Int.
              J. Hydrogen Energy 36 (2011) 15538–15547.
          [116]  H. Kim, M. Seol, J. Lee, K. Yong, Highly efficient photoelectrochemical hydrogen gen-
              eration using hierarchical ZnO/WO x  nanowires cosensitized with CdSe/CdS, J. Phys.
              Chem. C 115 (2011) 25429–25436.
          [117]  Y. Li, X. Zhang, S. Jiang, H. Dai, X. Sun, Y. Li, Improved photoelectrochemical prop-
              erty of a nanocomposite NiO/CdS@ZnO photoanode for water splitting, Sol. Energy
              Mater. Sol. Cells 132 (2015) 40–46.
          [118]  C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, C. Cheng, 3D ZnO/Au/CdS sandwich struc-
              tured inverse opal as photoelectrochemical anode with improved performance, Adv.
              Mater. Interfaces 2 (2015) 1500428.
          [119]  H.W. Jeong, T.H. Jeon, J.S. Jang, W. Choi, H. Park, Strategic modification of BiVO 4  for
              improving photoelectrochemical water oxidation performance, J. Phys. Chem. C 117
              (2013) 9104–9112.
          [120]  H.S. Park, K.E. Kweon, H. Ye, E. Paek, G.S. Hwang, A.J. Bard, Factors in the metal
              doping of BiVO 4  for improved photoelectrocatalytic activity as studied by scanning
              electrochemical microscopy and first-principles density-functional calculation, J. Phys.
              Chem. C 115 (2011) 17870–17879.
          [121]  S.K. Cho, H.S. Park, H.C. Lee, K.M. Nam, A.J. Bard, Metal doping of BiVO 4  by com-
              posite electrodeposition with improved photoelectrochemical water oxidation, J. Phys.
              Chem. C 117 (2013) 23048–23056.
          [122]  C. Zhu, C. Li, M. Zheng, J.-J. Delaunay, Plasma-induced oxygen vacancies in ultra-
              thin hematite nanoflakes promoting photoelectrochemical water oxidation, ACS Appl.
              Mater. Interfaces 7 (2015) 22355–22363.
   54   55   56   57   58   59   60   61   62   63   64