Page 59 - Multifunctional Photocatalytic Materials for Energy
P. 59
48 Multifunctional Photocatalytic Materials for Energy
[111] M. Wang, F. Ren, J. Zhou, G. Cai, L. Cai, Y. Hu, et al., N doping to ZnO nanorods for
photoelectrochemical water splitting under visible light: engineered impurity distribu-
tion and terraced band structure, Sci. Rep. 5 (2015) 12925.
[112] L. Yan, W. Zhao, Z. Liu, 1D ZnO/BiVO 4 heterojunction photoanodes for efficient pho-
toelectrochemical water splitting, Dalton Trans. 45 (2016) 11346–11352.
[113] C.K. Chen, Y.-P. Shen, H.M. Chen, C.-J. Chen, T.-S. Chan, J.-F. Lee, et al., Quantum-
dot-sensitized nitrogen-doped ZnO for efficient photoelectrochemical water splitting,
Eur. J. Inorg. Chem. 2014 (2014) 773–779.
[114] S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, Transition metal oxide loaded
ZnO nanorods: preparation, characterization and their UV–vis photocatalytic activities,
Sep. Purif. Technol. 132 (2014) 378–387.
[115] C.-H. Hsu, D.-H. Chen, Photoresponse and stability improvement of ZnO nanorod array
thin film as a single layer of photoelectrode for photoelectrochemical water splitting, Int.
J. Hydrogen Energy 36 (2011) 15538–15547.
[116] H. Kim, M. Seol, J. Lee, K. Yong, Highly efficient photoelectrochemical hydrogen gen-
eration using hierarchical ZnO/WO x nanowires cosensitized with CdSe/CdS, J. Phys.
Chem. C 115 (2011) 25429–25436.
[117] Y. Li, X. Zhang, S. Jiang, H. Dai, X. Sun, Y. Li, Improved photoelectrochemical prop-
erty of a nanocomposite NiO/CdS@ZnO photoanode for water splitting, Sol. Energy
Mater. Sol. Cells 132 (2015) 40–46.
[118] C. Li, X. Zhu, H. Zhang, Z. Zhu, B. Liu, C. Cheng, 3D ZnO/Au/CdS sandwich struc-
tured inverse opal as photoelectrochemical anode with improved performance, Adv.
Mater. Interfaces 2 (2015) 1500428.
[119] H.W. Jeong, T.H. Jeon, J.S. Jang, W. Choi, H. Park, Strategic modification of BiVO 4 for
improving photoelectrochemical water oxidation performance, J. Phys. Chem. C 117
(2013) 9104–9112.
[120] H.S. Park, K.E. Kweon, H. Ye, E. Paek, G.S. Hwang, A.J. Bard, Factors in the metal
doping of BiVO 4 for improved photoelectrocatalytic activity as studied by scanning
electrochemical microscopy and first-principles density-functional calculation, J. Phys.
Chem. C 115 (2011) 17870–17879.
[121] S.K. Cho, H.S. Park, H.C. Lee, K.M. Nam, A.J. Bard, Metal doping of BiVO 4 by com-
posite electrodeposition with improved photoelectrochemical water oxidation, J. Phys.
Chem. C 117 (2013) 23048–23056.
[122] C. Zhu, C. Li, M. Zheng, J.-J. Delaunay, Plasma-induced oxygen vacancies in ultra-
thin hematite nanoflakes promoting photoelectrochemical water oxidation, ACS Appl.
Mater. Interfaces 7 (2015) 22355–22363.