Page 58 - Multifunctional Photocatalytic Materials for Energy
P. 58
Metal oxide electrodes for photo-activated water splitting 47
[93] Z.J. Lin, X.H. Wang, J. Liu, Z.Y. Tian, L.C. Dai, B.B. He, et al., On the role of localized
surface plasmon resonance in UV-vis light irradiated Au/TiO 2 photocatalysis systems:
pros and cons, Nanoscale 7 (2015) 4114–4123.
[94] X.D. Wang, G.I.N. Waterhouse, D.R.G. Mitchell, K. Prince, R.A. Caruso, Noble metal-
modified porous titania networks and their application as photocatalysts, ChemCatChem
3 (2011) 1763–1771.
[95] Y. Li, H. Yu, C. Zhang, L. Fu, G. Li, Z. Shao, et al., Enhancement of photoelectrochemical re-
sponse by Au modified in TiO 2 nanorods, Int. J. Hydrogen Energy 38 (2013) 13023–13030.
[96] L. Wang, X. Zhou, N.T. Nguyen, P. Schmuki, Plasmon-enhanced photoelectrochem-
ical water splitting using Au nanoparticles decorated on hematite nanoflake arrays,
ChemSusChem 8 (2015) 618–622.
[97] R. Solarska, A. Królikowska, J. Augustyński, Silver nanoparticle induced photocurrent
enhancement at WO 3 photoanodes, Angew. Chem. Int. Ed. 49 (2010) 7980–7983.
[98] D.M. Fragua, R. Abargues, P.J. Rodriguez-Canto, J.F. Sanchez-Royo, S. Agouram,
J.P. Martinez-Pastor, Au–ZnO nanocomposite films for plasmonic photocatalysis, Adv.
Mater. Interfaces 2 (2015) 1500156.
[99] R. Lv, T. Wang, F. Su, P. Zhang, C. Li, J. Gong, Facile synthesis of ZnO nanopencil
arrays for photoelectrochemical water splitting, Nano Energy 7 (2014) 143–150.
[100] Y. Qiu, K. Yan, H. Deng, S. Yang, Secondary branching and nitrogen doping of ZnO
nanotetrapods: building a highly active network for photoelectrochemical water split-
ting, Nano Lett. 12 (2012) 407–413.
[101] N. Chouhan, C.L. Yeh, S.F. Hu, J.H. Huang, C.W. Tsai, R.S. Liu, et al., Array of CdSe
QD-sensitized ZnO nanorods serves as photoanode for water splitting, J. Electrochem.
Soc. 157 (2010) B1430–B1433.
[102] Y. Liu, L. Sun, J. Wu, T. Fang, R. Cai, A. Wei, Preparation and photocatalytic activity of
ZnO/Fe 2 O 3 nanotube composites, Mater. Sci. Eng. B 194 (2015) 9–13.
[103] S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, Sunlight responsive WO 3 /ZnO
nanorods for photocatalytic degradation and mineralization of chlorinated phenoxy-
acetic acid herbicides in water, J. Colloid Interface Sci. 450 (2015) 34–44.
[104] S.-M. Lam, J.-C. Sin, A.Z. Abdullah, A.R. Mohamed, ZnO nanorods surface-decorated
by WO 3 nanoparticles for photocatalytic degradation of endocrine disruptors under a
compact fluorescent lamp, Ceram. Int. 39 (2013) 2343–2352.
[105] J. Xie, Z. Zhou, Y. Lian, Y. Hao, X. Liu, M. Li, et al., Simple preparation of WO 3 –ZnO
composites with UV–vis photocatalytic activity and energy storage ability, Ceram. Int.
40 (2014) 12519–12524.
[106] F. Zheng, H. Lu, M. Guo, M. Zhang, Q. Zhen, Hydrothermal preparation of WO 3 na-
norod array and ZnO nanosheet array composite structures on FTO substrates with en-
hanced photocatalytic properties, J. Mater. Chem. C 3 (2015) 7612–7620.
[107] M. Wang, C. Chen, H. Qin, L. Zhang, Y. Fang, J. Liu, et al., Construction of FeS 2 -
sensitized ZnO@ZnS nanorod arrays with enhanced optical and photoresponse perfor-
mances, Adv. Mater. Interfaces 2 (2015) 1500163.
[108] G.K. Pradhan, S. Martha, K.M. Parida, Synthesis of multifunctional nanostructured
zinc–iron mixed oxide photocatalyst by a simple solution-combustion technique, ACS
Appl. Mater. Interfaces 4 (2012) 707–713.
[109] A. Thomas, C. Janáky, G.F. Samu, M.N. Huda, P. Sarker, J.P. Liu, et al., Time- and
energy- efficient solution combustion synthesis of binary metal tungstate nanoparticles
with enhanced photocatalytic activity, ChemSusChem 8 (2015) 1652–1663.
[110] L. Cai, F. Ren, M. Wang, G. Cai, Y. Chen, Y. Liu, et al., V ions implanted ZnO nanorod
arrays for photoelectrochemical water splitting under visible light, Int. J. Hydrogen
Energy 40 (2015) 1394–1401.