Page 55 - Multifunctional Photocatalytic Materials for Energy
P. 55
44 Multifunctional Photocatalytic Materials for Energy
[38] M. Cargnello, A. Gasparotto, V. Gombac, T. Montini, D. Barreca, P. Fornasiero,
Photocatalytic H 2 and added-value by-products – the role of metal oxide systems in
their synthesis from oxygenates, Eur. J. Inorg. Chem. 2011 (2011) 4309–4323.
[39] J.B. Baxter, C. Richter, C.A. Schmuttenmaer, Ultrafast carrier dynamics in nanostruc-
tures for solar fuels, Annu. Rev. Phys. Chem. 65 (2014) 423–447.
[40] L. Meda, L. Abbondanza, Materials for photo-electrochemical water splitting, Rev. Adv.
Sci. Eng. 2 (2013) 200–207.
[41] J. Augustynski, K. Bienkowski, R. Solarska, Plasmon resonance-enhanced photoelec-
trodes and photocatalysts, Coord. Chem. Rev. 325 (2016) 116–124.
[42] S.J.A. Moniz, S.A. Shevlin, D.J. Martin, Z.-X. Guo, J. Tang, Visible-light driven hetero-
junction photocatalysts for water splitting – a critical review, Energy Environ. Sci.
8 (2015) 731–759.
[43] M.G. Mali, H. Yoon, M.-w. Kim, M.T. Swihart, S.S. Al-Deyab, S.S. Yoon, Electrosprayed
heterojunction WO 3 /BiVO 4 films with nanotextured pillar structure for enhanced photo-
electrochemical water splitting, Appl. Phys. Lett. 106 (2015) 151603.
[44] R. Solarska, K. Bienkowski, S. Zoladek, A. Majcher, T. Stefaniuk, P.J. Kulesza, et al.,
Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic
gold–polyoxometalate particles, Angew. Chem. Int. Ed. 53 (2014) 14196–14200.
[45] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor elec-
trode, Nature 238 (1972) 37–38.
[46] H. Han, F. Riboni, F. Karlicky, S. Kment, A. Goswami, P. Sudhagar, et al., α-Fe 2 O 3 /
TiO 2 3D hierarchical nanostructures for enhanced photoelectrochemical water splitting,
Nanoscale 9 (2017) 134–142.
[47] M. Chakraborty, D. Roy, A. Biswas, R. Thangavel, G. Udayabhanu, Structural, optical
and photo-electrochemical properties of hydrothermally grown ZnO nanorods arrays
covered with α-Fe 2 O 3 nanoparticles, RSC Adv. 6 (2016) 75063–75072.
[48] S. Palmas, P.A. Castresana, L. Mais, A. Vacca, M. Mascia, P.C. Ricci, TiO 2 -WO 3 nanostruc-
tured systems for photoelectrochemical applications, RSC Adv. 6 (2016) 101671–101682.
[49] A. Sheikh, A. Yengantiwar, M. Deo, S. Kelkar, S. Ogale, Near-field plasmonic function-
alization of light harvesting oxide–oxide heterojunctions for efficient solar photoelectro-
chemical water splitting: the AuNP/ZnFe 2 O 4 /ZnO system, Small 9 (2013) 2091–2096.
[50] Q. Liu, F. Cao, F. Wu, W. Tian, L. Li, Interface reacted ZnFe 2 O 4 on α-Fe 2 O 3 nanoarrays
for largely improved photoelectrochemical activity, RSC Adv. 5 (2015) 79440–79446.
[51] Y. Guo, Y. Fu, Y. Liu, S. Shen, Photoelectrochemical activity of ZnFe 2 O 4 modified
α-Fe 2 O 3 nanorod array films, RSC Adv. 4 (2014) 36967–36972.
[52] C. Chen, H. Bai, Z. Da, M. Li, X. Yan, J. Jiang, et al., Hydrothermal synthesis of Fe 2 O 3 /
ZnO heterojunction photoanode for photoelectrochemical water splitting, Funct. Mater.
Lett. 08 (2015) 1550058.
[53] C. Zhang, W. Fan, H. Bai, X. Yu, C. Chen, R. Zhang, et al., Sandwich-nanostructured NiO–
ZnO nanowires@α-Fe 2 O 3 film photoanode with a synergistic effect and p–n junction for
efficient photoelectrochemical water splitting, ChemElectroChem 1 (2014) 2089–2097.
[54] Y. Liu, H. He, J. Li, W. Li, Y. Yang, Y. Li, et al., ZnO nanoparticle-functionalized WO 3
plates with enhanced photoelectrochemical properties, RSC Adv. 5 (2015) 46928–46934.
[55] R. Solarska, K. Bieńkowski, A. Królikowska, M. Dolata, J. Augustyński, Nanoporous
WO 3 –Fe 2 O 3 films; structural and photo-electrochemical characterization, Funct. Mater.
Lett. 07 (2014) 1440006.
[56] R. Solarska, R. Jurczakowski, J. Augustynski, A highly stable, efficient visible-light
driven water photoelectrolysis system using a nanocrystalline WO 3 photoanode and a
methane sulfonic acid electrolyte, Nanoscale 4 (2012) 1553–1556.