Page 57 - Multifunctional Photocatalytic Materials for Energy
P. 57
46 Multifunctional Photocatalytic Materials for Energy
[75] D.P. Cao, W.J. Luo, J.Y. Feng, X. Zhao, Z.S. Li, Z.G. Zou, Cathodic shift of onset po-
4+
tential for water oxidation on a Ti doped Fe 2 O 3 photoanode by suppressing the back
reaction, Energy Environ. Sci. 7 (2014) 752–759.
[76] F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Passivating
surface states on water splitting hematite photoanodes with alumina overlayers, Chem.
Sci. 2 (2011) 737–743.
[77] L. Steier, I. Herraiz-Cardona, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, S.D. Tilley,
et al., Understanding the role of underlayers and overlayers in thin film hematite photo-
anodes, Adv. Funct. Mater. 24 (2014) 7681–7688.
[78] L. Xi, S.Y. Chiam, W.F. Mak, P.D. Tran, J. Barber, S.C.J. Loo, et al., A novel strategy
for surface treatment on hematite photoanode for efficient water oxidation, Chem. Sci.
4 (2013) 164–169.
[79] M.F. Gromboni, D. Coelho, L.H. Mascaro, A. Pockett, F. Marken, Enhancing activity in
a nanostructured BiVO 4 photoanode with a coating of microporous Al 2 O 3 , Appl. Catal.
B 200 (2017) 133–140.
[80] J.Y. Kim, G. Magesh, D.H. Youn, J.-W. Jang, J. Kubota, K. Domen, J.S. Lee, Single-
crystalline, wormlike hematite photoanodes for efficient solar water splitting, Sci. Rep.
3 (2013) 2681.
[81] D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, F. Rossi, G. Salviati, et al., Surface
functionalization of nanostructured Fe 2 O 3 polymorphs: from design to light-activated
applications, ACS Appl. Mater. Interfaces 5 (2013) 7130–7138.
[82] S. Hu, M.R. Shaner, J.A. Beardslee, M. Lichterman, B.S. Brunschwig, N.S. Lewis,
Amorphous TiO 2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water
oxidation, Science 344 (2014) 1005–1009.
[83] S.M. Ji, H. Jun, J.S. Jang, H.C. Son, P.H. Borse, J.S. Lee, Photocatalytic hydrogen pro-
duction from natural seawater, J. Photochem. Photobiol. A 189 (2007) 141–144.
[84] H. Joo, S. Bae, C. Kim, S. Kim, J. Yoon, Hydrogen evolution in enzymatic photoelectro-
chemical cell using modified seawater electrolytes produced by membrane desalination
process, Sol. Energy Mater. Sol. Cells 93 (2009) 1555–1561.
[85] M.A. Butler, R.D. Nasby, R.K. Quinn, Tungsten trioxide as an electrode for photoelec-
trolysis of water, Solid State Commun. 19 (1976) 1011–1014.
[86] G. Hodes, D. Cahen, J. Manassen, Tungsten trioxide as a photoanode for a photoelectro-
chemical cell (PEC), Nature 260 (1976) 312–313.
[87] P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, et al., Simultaneously effi-
cient light absorption and charge separation in WO 3 /BiVO 4 core/shell nanowire photo-
anode for photoelectrochemical water oxidation, Nano Lett. 14 (2014) 1099–1105.
[88] X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee, et al., Efficient photoelectro-
chemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix
nanostructures, Nat. Commun. 5 (2014) 4775.
[89] N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar, T. Pauporté, D. Lincot, Pulsed
electrodeposition of WO 3 –TiO 2 composite films, Electrochem. Commun. 5 (2003)
220–224.
[90] S. Wei, Y. Ma, Y. Chen, L. Liu, Y. Liu, Z. Shao, Fabrication of WO 3 /Cu 2 O composite
films and their photocatalytic activity, J. Hazard. Mater. 194 (2011) 243–249.
[91] S. Mubeen, J. Lee, N. Singh, S. Kramer, G.D. Stucky, M. Moskovits, An autonomous
photosynthetic device in which all charge carriers derive from surface plasmons, Nat.
Nanotechnol. 8 (2013) 247–251.
[92] E. Thimsen, F. Le Formal, M. Grätzel, S.C. Warren, Influence of plasmonic Au nanopar-
ticles on the photoactivity of Fe 2 O 3 electrodes for water splitting, Nano Lett. 11 (2011)
35–43.