Page 57 - Multifunctional Photocatalytic Materials for Energy
P. 57

46                                 Multifunctional Photocatalytic Materials for Energy

           [75]  D.P. Cao, W.J. Luo, J.Y. Feng, X. Zhao, Z.S. Li, Z.G. Zou, Cathodic shift of onset po-
                                       4+
              tential for water oxidation on a Ti  doped Fe 2 O 3  photoanode by suppressing the back
              reaction, Energy Environ. Sci. 7 (2014) 752–759.
           [76]  F. Le Formal, N. Tétreault, M. Cornuz, T. Moehl, M. Grätzel, K. Sivula, Passivating
              surface states on water splitting hematite photoanodes with alumina overlayers, Chem.
              Sci. 2 (2011) 737–743.
           [77]  L. Steier, I. Herraiz-Cardona, S. Gimenez, F. Fabregat-Santiago, J. Bisquert, S.D. Tilley,
              et al., Understanding the role of underlayers and overlayers in thin film hematite photo-
              anodes, Adv. Funct. Mater. 24 (2014) 7681–7688.
           [78]  L. Xi, S.Y. Chiam, W.F. Mak, P.D. Tran, J. Barber, S.C.J. Loo, et al., A novel strategy
              for surface treatment on hematite photoanode for efficient water oxidation, Chem. Sci.
              4 (2013) 164–169.
           [79]  M.F. Gromboni, D. Coelho, L.H. Mascaro, A. Pockett, F. Marken, Enhancing activity in
              a nanostructured BiVO 4  photoanode with a coating of microporous Al 2 O 3 , Appl. Catal.
              B 200 (2017) 133–140.
           [80]  J.Y.  Kim, G.  Magesh, D.H.  Youn, J.-W.  Jang, J.  Kubota, K.  Domen, J.S.  Lee, Single-
              crystalline, wormlike hematite photoanodes for efficient solar water splitting, Sci. Rep.
              3 (2013) 2681.
           [81]  D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, F. Rossi, G. Salviati, et al., Surface
              functionalization of nanostructured Fe 2 O 3  polymorphs: from design to light-activated
              applications, ACS Appl. Mater. Interfaces 5 (2013) 7130–7138.
           [82]  S.  Hu, M.R.  Shaner, J.A.  Beardslee, M.  Lichterman, B.S.  Brunschwig, N.S.  Lewis,
              Amorphous TiO 2  coatings stabilize Si, GaAs, and GaP photoanodes for efficient water
              oxidation, Science 344 (2014) 1005–1009.
           [83]  S.M. Ji, H. Jun, J.S. Jang, H.C. Son, P.H. Borse, J.S. Lee, Photocatalytic hydrogen pro-
              duction from natural seawater, J. Photochem. Photobiol. A 189 (2007) 141–144.
           [84]  H. Joo, S. Bae, C. Kim, S. Kim, J. Yoon, Hydrogen evolution in enzymatic photoelectro-
              chemical cell using modified seawater electrolytes produced by membrane desalination
              process, Sol. Energy Mater. Sol. Cells 93 (2009) 1555–1561.
           [85]  M.A. Butler, R.D. Nasby, R.K. Quinn, Tungsten trioxide as an electrode for photoelec-
              trolysis of water, Solid State Commun. 19 (1976) 1011–1014.
           [86]  G. Hodes, D. Cahen, J. Manassen, Tungsten trioxide as a photoanode for a photoelectro-
              chemical cell (PEC), Nature 260 (1976) 312–313.
           [87]  P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, et al., Simultaneously effi-
              cient light absorption and charge separation in WO 3 /BiVO 4  core/shell nanowire photo-
              anode for photoelectrochemical water oxidation, Nano Lett. 14 (2014) 1099–1105.
           [88]  X. Shi, I.Y. Choi, K. Zhang, J. Kwon, D.Y. Kim, J.K. Lee, et al., Efficient photoelectro-
              chemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix
              nanostructures, Nat. Commun. 5 (2014) 4775.
           [89]  N.R. de Tacconi, C.R. Chenthamarakshan, K. Rajeshwar, T. Pauporté, D. Lincot, Pulsed
              electrodeposition  of WO 3 –TiO 2  composite  films, Electrochem.  Commun.  5 (2003)
              220–224.
           [90]  S. Wei, Y. Ma, Y. Chen, L. Liu, Y. Liu, Z. Shao, Fabrication of WO 3 /Cu 2 O composite
              films and their photocatalytic activity, J. Hazard. Mater. 194 (2011) 243–249.
           [91]  S. Mubeen, J. Lee, N. Singh, S. Kramer, G.D. Stucky, M. Moskovits, An autonomous
              photosynthetic device in which all charge carriers derive from surface plasmons, Nat.
              Nanotechnol. 8 (2013) 247–251.
           [92]  E. Thimsen, F. Le Formal, M. Grätzel, S.C. Warren, Influence of plasmonic Au nanopar-
              ticles on the photoactivity of Fe 2 O 3  electrodes for water splitting, Nano Lett. 11 (2011)
              35–43.
   52   53   54   55   56   57   58   59   60   61   62