Page 54 - Multifunctional Photocatalytic Materials for Energy
P. 54

Metal oxide electrodes for photo-activated water splitting         43

             [21]  W. Smith, A. Wolcott, R.C. Fitzmorris, J.Z. Zhang, Y. Zhao, Quasi-core-shell TiO 2 /WO 3
                 and WO 3 /TiO 2  nanorod arrays fabricated by glancing angle deposition for solar water
                 splitting, J. Mater. Chem. 21 (2011) 10792–10800.
             [22]  T. Li, J. He, B. Peña, C.P. Berlinguette, Exposure of WO 3  photoanodes to ultraviolet
                 light enhances photoelectrochemical water oxidation, ACS Appl. Mater. Interfaces
                 8 (2016) 25010–25013.
             [23]  S.J.A. Moniz, J. Zhu, J. Tang, 1D Co-Pi modified BiVO 4 /ZnO junction cascade for effi-
                 cient photoelectrochemical water cleavage, Adv. Energy Mater. 4 (2014) 1301590.
             [24]  D. Eisenberg, H.S. Ahn, A.J. Bard, Enhanced photoelectrochemical water oxidation on
                 bismuth vanadate by electrodeposition of amorphous titanium dioxide, J. Am. Chem.
                 Soc. 136 (2014) 14011–14014.
             [25]  H. Chen, Z. Wei, K. Yan, Y. Bai, Z. Zhu, T. Zhang, S. Yang, Epitaxial growth of ZnO
                 nanodisks with large exposed polar facets on nanowire arrays for promoting photoelec-
                 trochemical water splitting, Small 10 (2014) 4760–4769.
             [26]  C. Zhang, M. Shao, F. Ning, S. Xu, Z. Li, M. Wei, et al., Au nanoparticles sensitized
                 ZnO nanorod@nanoplatelet core–shell arrays for enhanced photoelectrochemical water
                 splitting, Nano Energy 12 (2015) 231–239.
             [27]  C. Jiang, S.J.A. Moniz, M. Khraisheh, J. Tang, Earth-abundant oxygen evolution cata-
                 lysts coupled onto ZnO nanowire arrays for efficient photoelectrochemical water cleav-
                 age, Chem. Eur. J. 20 (2014) 12954–12961.
             [28]  Y. Wei, L. Ke, J. Kong, H. Liu, Z. Jiao, X. Lu, H. Du, X.W. Sun, Enhanced photoelec-
                 trochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with
                 Ag nanoparticles, Nanotechnology 23 (2012) 235401.
             [29]  D.  Barreca, G.  Carraro, A.  Gasparotto, C.  Maccato, M.E.A.  Warwick, K.  Kaunisto,
                 et  al., Fe 2 O 3 –TiO 2  nano-heterostructure photoanodes for highly efficient solar water
                   oxidation, Adv. Mater. Interfaces 2 (2015) 1500313.
             [30]  W. Luo, Z. Yang, Z. Li, J. Zhang, J. Liu, Z. Zhao, Z. Wang, S. Yan, T. Yu, Z. Zou,
                 Solar hydrogen generation from seawater with a modified BiVO 4  photoanode, Energy
                 Environ. Sci. 4 (2011) 4046–4051.
             [31]  R. Liu, Z. Zheng, J. Spurgeon, X. Yang, Enhanced photoelectrochemical water-splitting
                 performance of semiconductors by surface passivation layers, Energy Environ. Sci.
                 7 (2014) 2504.
             [32]  X. Chen, Z. Zhang, L. Chi, A.K. Nair, W. Shangguan, Z. Jiang, Recent advances in
                   visible-light-driven photoelectrochemical water splitting: catalyst nanostructures and
                 reaction systems, Nano-Micro Lett. 8 (2016) 1–12.
             [33]  T. Zhu, M.N. Chong, E.S. Chan, Nanostructured tungsten trioxide thin films synthe-
                 sized  for  photoelectrocatalytic water oxidation:  a  review, ChemSusChem  7  (2014)
                 2974–2997.
             [34]  M. Wu, W.-J. Chen, Y.-H. Shen, F.-Z. Huang, C.-H. Li, S.-K. Li, In situ growth of match-
                 like ZnO/Au plasmonic heterostructure for enhanced photoelectrochemical water split-
                 ting, ACS Appl. Mater. Interfaces 6 (2014) 15052–15060.
             [35]  T.A. Pham, Y. Ping, G. Galli, Modelling heterogeneous interfaces for solar water split-
                 ting, Nat. Mater. 16 (2017) 401–408.
             [36]  Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenide-nanosheet-based
                 composites for photocatalytic and electrocatalytic hydrogen evolution reactions,  Adv.
                 Mater. 28 (2016) 1917–1933.
             [37]  D. Barreca, G. Carraro, V. Gombac, A. Gasparotto, C. Maccato, P. Fornasiero, et al.,
                 Supported  metal  oxide  nanosystems  for  hydrogen  photogeneration:  quo  vadis? Adv.
                 Funct. Mater. 21 (2011) 2611–2623.
   49   50   51   52   53   54   55   56   57   58   59