Page 211 - Book Hosokawa Nanoparticle Technology Handbook
P. 211

4.2 NANOPARTICLES ARRANGED STRUCTURES                                        FUNDAMENTALS
                   [9] K. Kjaergaard, J.K. Sørensen, M.A. Schembri,  [20] C. Mao, C.E. Flynn, A. Hayhurst, R. Sweeney, J. Qi,
                      P. Klemm: Appl. Environ. Microbiol., 66, 10–14 (2000).  G. Georgiou, B. Iverson, A.M. Belcher:  Proc. Natl.
                  [10] M. Umetsu, M. Mizuta, K.  Tsumoto, S. Ohara,  Acad. Sci. USA., 100, 6946–6951 (2003).
                      S. Takami, H.  Watanabe, I. Kumagai,  T.  Adschiri:  [21] C. Mao, D.J. Solis, B.D. Reiss, S.T. Kottmann,
                      Adv. Mater., 17, 2571–2575 (2005).             R.Y. Sweeney, A. Hayhurst, G. Georgiou, B. Iverson,
                  [11] S. Nygaard, R. Wendelbo, S. Brown: Adv. Mater., 14,  A.M. Belcher: Science, 303, 213–217 (2004).
                      1853–1856 (2002).
                  [12] D.J.H. Gaskin, K. Starck, E.N. Vulfson: Biotech. Lett.,
                                                                 4.2.3 Preparation of ceramic films by liquid-phase
                      22, 1211–1216 (2000).
                                                                 processing: Electrophoresis
                  [13] R.R. Naik, S.J. Stringer, G.  Agarwal, S.E. Jones,
                      M.O. Stone MO: Nat. Mater., 1, 169–172 (2002).
                                                                 Colloidal processing, which is composed of the disper-
                  [14] R.R. Naik,  L.L. Brott, S.J. Clarson, M.O. Stone:  sion of ceramic powders in liquid media followed by
                      J. Nanosci. Nanotechnol., 2, 95–100 (2002).  consolidation, is superior to conventional dry process-
                  [15] S.W. Lee, C.B. Mao, C.E. Flynn,  A.M. Belcher:  ing in the control of density and microstructure of
                      Science, 296, 892–895 (2002).              green and sintered bodies. Electrophoretic deposition
                  [16] K. Sano, K. Shiba:  J. Am. Chem. Soc.,  125,  (EPD) is one of the most promising colloidal processes
                      14234–14235 (2003).                        wherein ceramic bodies are directly shaped from a
                                                                 stable colloidal suspension by a dc electric field. Elec-
                  [17] D. Kase, J.L. Kulp, M. Yudasaka, J.S. Evans, S. Iijima,
                                                                 trically conductive metals or graphite are often used
                      K. Shiba: Langmiur, 20, 8939–8941 (2004).
                                                                 both as an electrode and a substrate, however a non-
                  [18] S. Wang, E.S. Humphreys, S.Y. Chung, D.F. Delduco,
                                                                 conductive porous material, which is placed in front of
                      S.R. Lustig, H.  Wang, K.N. Parker, N.W. Rizzo,
                                                                 an electrode non-contactedly, is also possible to use as
                      S. Subramoney, Y.M. Chiang, A. Jagota: Nat. Mater.,  a substrate. EPD is a combination of two processes:
                      2, 196–200 (2003).                         electrophoresis of charged particles in a suspension
                  [19] M. Sarikaya, C.  Tamerler,  A.K. Jen, K. Schulten,  and  deposition on a substrate.  The mechanism of
                      F. Baneyx: Nat. Mater., 2, 577–585 (2003).  deposition is explained based on the DLVO theory; the

































                  Figure 4.2.13
                  The electrophoresis of particles and electric field lines during electrophoretic deposition between a pair of
                  cylindrical electrodes.

                                                                                                        187
   206   207   208   209   210   211   212   213   214   215   216