Page 223 - Book Hosokawa Nanoparticle Technology Handbook
P. 223
4.3 NANOPORE STRUCTURE FUNDAMENTALS
Figure 4.3.16
SEM micrographs of (a) nano-ZrO -coated PS particles and (b) sintered surface after sintering the coated particles.
2
silica structures characterized by a well-defined order [8] T. Fukasawa, M. Ando, T. Ohji and K. Kanzaki: J. Am.
are formed by removing PS particles (Fig. 4.3.14(b)). Ceram. Soc., 84, 230–232 (2001).
The structure consists of hexagonally close-packed [9] C.T. Kresge, M.E. Leonowics, W.J. Roth, J.C. Vartuli
uniform spherical pores and connecting channels. and J.S. Beck: Nature, 359, 710–712 (1992).
Figure 4.3.15 shows SEM micrographs of porous sin- [10] S. Inagaki, Y. Fukushima and K. Kuroda: J. Chem.
tered samples synthesized under different reaction Soc. Chem. Commun., 680–682 (1993).
conditions (pH 1.5, 2, and 3). The pore structures are [11] Q. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth,
replicate of the hexagonal close-packed PS spheres.
The silica wall thickness becomes thicker as the pH is P. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka,
decreased, i.e. consistent with the relation between the F. Schuth and G.D. Stucky: Chem. Mater., 6,
film thickness and pH shown in Figure 4.3.12. Thus, 1176–1191 (1994).
it is possible to control the wall thickness well by use [12] Y.M. Setoguchi, Y. Teraoka, I. Moriguchi, S. Kagawa,
of coated particles. N. Tomonaga, A. Yatsutake and J. Izumi: J. Porous
Ordered porous microstructures with controlled Mater., 4, 129–134 (1997).
pores have been reported not only from silica pre- [13] J. Xu, Z. Luan, H. He, W. Zgao and L. Kevan: Chem.
cursors but also from zirconia precursors [21]. Mater., 10, 3690–3698 (1998).
Well-dispersed nanosized ZrO 2 particles were [14] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka and
coated on PS particles which are used as a building G.D. Stucky: J. Am. Chem. Soc., 120, 6024–6036 (1998).
block to obtain porous microstructures [22]. The
resulting ZrO microstructures composed of both [15] S.A. Salty, T. Hanaoka: Adv. Mater., 15, 1893–1899
2
macropores and mesopores due to the PS template (2003).
particles and assembly of nanoparticles, respec- [16] O.D. Velev, W.E. Kaler: Adv. Mater., 12, 531–534
tively (Fig. 4.3.16). (2000).
[17] B.T. Holland, C.F. Blanford, T. Do and A. Stein:
Chem. Mater., 11, 795–805 (1999).
References [18] S.H. Park, Y. Xia: Adv. Mater., 10, 1045–1048 (1998).
[19] B.H. Juarez, M. Ibistate, J.M. Palacios and C. Lopez:
[1] N. Takeda, T. Torimoto, S. Sampath, S. Kuwabara and Adv. Mater., 15, 319–323 (2003).
H. Yoneyama: J. Phys. Chem., 99, 9986–9991 (1995). [20] Y. Hotta, P.C.A. Alberius and L. Bergström: J. Mater.
[2] I. Hattori: Ceram. Jpn., 29, 307 (1994). Chem., 13, 496–501 (2003).
[3] T. Takebayashi, T. Inada: Ceram. Jpn., 32, 356 (1997). [21] Y. Hotta, Y. Jia, M. Kawamura, K. Tsunekawa, K. Sato,
[4] A. Mori, N. Matsumoto and C. Imai: Biotechnol. K. Watari: J. Mater. Sci., 40, 1–7 (2005).
Lett., 11, 183–188 (1989). [22] Y. Jia, C. Duran, Y. Hotta, K. Sato and K. Watari:
[5] M.E.V. Costa, P.Q. Mantas: J. Eur. Ceram. Soc., 19, J. Colloid. Inter. Sci., 291, 292–295 (2005).
1077–1080 (1999).
[6] Y. Hotta, T. Banno and K. Oda: J. Mater. Sci., 37, 4.3.4 Nanoporous materials (Titania nanotubes)
417–423 (2002).
[7] P. Colombo, M. Modesti: J. Am. Ceram. Soc., 82, Recently, much attention has been paid to research
573–578 (1999). on the novel functionalities of materials by controlling
199