Page 223 - Book Hosokawa Nanoparticle Technology Handbook
P. 223

4.3 NANOPORE STRUCTURE                                                       FUNDAMENTALS




















                  Figure 4.3.16
                  SEM micrographs of (a) nano-ZrO -coated PS particles and (b) sintered surface after sintering the coated particles.
                                           2
                  silica structures characterized by a well-defined order  [8] T. Fukasawa, M. Ando, T. Ohji and K. Kanzaki: J. Am.
                  are formed by removing PS particles (Fig. 4.3.14(b)).  Ceram. Soc., 84, 230–232 (2001).
                  The structure consists of hexagonally close-packed  [9] C.T. Kresge, M.E. Leonowics, W.J. Roth, J.C. Vartuli
                  uniform spherical pores and connecting channels.   and J.S. Beck: Nature, 359, 710–712 (1992).
                  Figure 4.3.15 shows SEM micrographs of porous sin-  [10] S. Inagaki, Y. Fukushima and K. Kuroda:  J. Chem.
                  tered samples synthesized under different reaction  Soc. Chem. Commun., 680–682 (1993).
                  conditions (pH 1.5, 2, and 3). The pore structures are  [11] Q. Huo, D.I. Margolese, U. Ciesla, D.G. Demuth,
                  replicate of the hexagonal close-packed PS spheres.
                  The silica wall thickness becomes thicker as the pH is  P. Feng, T.E. Gier, P. Sieger, A. Firouzi, B.F. Chmelka,
                  decreased, i.e. consistent with the relation between the  F. Schuth and G.D. Stucky:  Chem. Mater.,  6,
                  film thickness and pH shown in Figure 4.3.12. Thus,  1176–1191 (1994).
                  it is possible to control the wall thickness well by use  [12] Y.M. Setoguchi, Y. Teraoka, I. Moriguchi, S. Kagawa,
                  of coated particles.                               N. Tomonaga, A. Yatsutake and J. Izumi:  J. Porous
                    Ordered porous microstructures with controlled   Mater., 4, 129–134 (1997).
                  pores have been reported not only from silica pre-  [13] J. Xu, Z. Luan, H. He, W. Zgao and L. Kevan: Chem.
                  cursors but also from zirconia precursors [21].    Mater., 10, 3690–3698 (1998).
                  Well-dispersed nanosized ZrO 2  particles were  [14] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka and
                  coated on PS particles which are used as a building  G.D. Stucky: J. Am. Chem. Soc., 120, 6024–6036 (1998).
                  block to obtain porous microstructures [22].  The
                  resulting ZrO microstructures composed of both  [15] S.A. Salty, T. Hanaoka: Adv. Mater., 15, 1893–1899
                              2
                  macropores and mesopores due to the PS template    (2003).
                  particles and assembly of nanoparticles, respec-  [16] O.D. Velev,  W.E.  Kaler:  Adv. Mater.,  12, 531–534
                  tively (Fig. 4.3.16).                              (2000).
                                                                 [17] B.T. Holland, C.F. Blanford,  T. Do and  A. Stein:
                                                                     Chem. Mater., 11, 795–805 (1999).
                                   References                    [18] S.H. Park, Y. Xia: Adv. Mater., 10, 1045–1048 (1998).
                                                                 [19] B.H. Juarez, M. Ibistate, J.M. Palacios and C. Lopez:
                   [1] N. Takeda, T. Torimoto, S. Sampath, S. Kuwabara and  Adv. Mater., 15, 319–323 (2003).
                      H. Yoneyama: J. Phys. Chem., 99, 9986–9991 (1995).  [20] Y. Hotta, P.C.A. Alberius and L. Bergström: J. Mater.
                   [2] I. Hattori: Ceram. Jpn., 29, 307 (1994).      Chem., 13, 496–501 (2003).
                   [3] T. Takebayashi, T. Inada: Ceram. Jpn., 32, 356 (1997).  [21] Y. Hotta, Y. Jia, M. Kawamura, K. Tsunekawa, K. Sato,
                   [4] A. Mori, N. Matsumoto and C. Imai:  Biotechnol.  K. Watari: J. Mater. Sci., 40, 1–7 (2005).
                      Lett., 11, 183–188 (1989).                 [22] Y. Jia, C. Duran, Y. Hotta, K. Sato and K.  Watari:
                   [5] M.E.V. Costa, P.Q. Mantas: J. Eur. Ceram. Soc., 19,  J. Colloid. Inter. Sci., 291, 292–295 (2005).
                      1077–1080 (1999).
                   [6] Y. Hotta, T. Banno and K. Oda:  J. Mater. Sci.,  37,  4.3.4 Nanoporous materials (Titania nanotubes)
                      417–423 (2002).
                   [7] P. Colombo, M. Modesti:  J. Am. Ceram. Soc.,  82,  Recently, much attention has been paid to research
                      573–578 (1999).                            on the novel functionalities of materials by controlling

                                                                                                        199
   218   219   220   221   222   223   224   225   226   227   228