Page 223 - Numerical Analysis Using MATLAB and Excel
P. 223

Chapter 6  Fourier, Taylor, and Maclaurin Series


                Next, we multiply both sides of the above expression by dt , and we integrate over the period   to
                                                                                                         0
                2π . Then,

                         2π             1    2π             2π                2π
                       ∫   ft()sin 2t t =  --a 0 ∫  sin 2t t + a 1 ∫  cos tsin 2t t +  a 2 ∫  cos 2tsin 2t t
                                         -
                                                                                           d
                                   d
                                                    d
                                                                       d
                                        2
                        0                    0             0                  0
                                              2π                  2π
                                                           d
                                         + a 3 ∫  cos 3tsin 2t t +  a 4 ∫  cos 4tsin 2t t + …
                                                                              d
                                              0                   0                                    (6.11)
                                               2π                2π               2π
                                                                          2
                                                                         )
                                                                                              d
                                                         d
                                         + b 1 ∫  sin tsin 2t t +  b 2 ∫  (  sin 2t d +  b 3 ∫  sin 3tsin 2t t
                                                                            t
                                              0                 0                 0
                                               2π
                                                           d
                                         + b 4 ∫  sin 4tsin 2t t +  …
                                              0
                We observe that every term on the right side of (6.11) except the term
                                                           2π
                                                                   )
                                                                   2
                                                       b 2 ∫  (  sin 2t d t
                                                          0
                is zero as we found in (6.6) and (6.7). Therefore, (6.11) reduces to
                                             2π                 2π
                                           ∫   ft()sin 2t t =  b 2 ∫  (  sin 2t d =  b π
                                                                         2
                                                                        )
                                                       d
                                                                           t
                                                                                2
                                            0                  0
                or
                                                         1   2π
                                                    b =  --- ∫ 0  ft()sin 2t t
                                                                       d
                                                     2
                                                         π
                and thus we can evaluate this integral for any given function ft() . The remaining coefficients can
                be evaluated similarly.
                The coefficients  a 0  , a n  , and b n  are found from the following relations.
                                                   1      1  2π
                                                   -
                                                                   d
                                                   --a =  ------ ∫  ft() t                             (6.12)
                                                   2  0  2π  0
                                                      1   2π
                                                 a =  --- ∫ 0  ft()cos nt t                            (6.13)
                                                                    d
                                                  n
                                                      π
                                                       1  2π
                                                 b =   --- ∫ 0  ft()sin nt t                           (6.14)
                                                                    d
                                                  n
                                                       π



               6−6                              Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                              Copyright © Orchard Publications
   218   219   220   221   222   223   224   225   226   227   228