Page 292 - Numerical Analysis Using MATLAB and Excel
P. 292

Chapter 7  Finite Differences and Interpolation



                r0 =
                     0     0     0    -1
                q1 =
                     8    -4
                r1 =
                     0     0     2
                q2 =
                     8
                r2 =
                     0    12
                q3 =
                     0
                r3 =
                     8
                Therefore,

                                        p m() =  8m()  3 ()  +  12 m()  2 ()  +  2m()  1 ()  –  1      (7.43)
                                         n
                Taking the antidifference of (7.43) we obtain

                                     –
                                      1
                                                                    ------------------ –
                                                          --------------------- +
                                    Δ p m() =   8m()  4 ()  12 m()  3 ()  2m()  2 ()  ()  1 ()         (7.44)
                                                                              m
                                                ------------------ +
                                        n
                                                   4
                                                                       2
                                                             3
                                                                    m
                                              =  2m()  4 ()  +  4m()  3 () +  ()  2 ()  – ()  1 ()
                                                                           m
                and with (7.40)
                         ∑  cubes =  2m()  4 ()  +  4m()  3 ()  +  ()  2 () – ()  1 ()  n +  1 1
                                                                m
                                                        m
                                                                      m =
                                                                                   )
                                                    (
                                                                           )
                                                              (
                                                                   )
                                                         )
                                                                     (
                                                   )
                                           )
                                             (
                                                      –
                                     2n +  1 nn – 1 n2 +    4n +  1 nn –  1 + (  n +  1 n –  (  n +  1 )  (7.45)
                                      ( =
                                     – 21()  4 () – 4 1()  3 ()  –  1 ()  2 ()  +  1 ()  1 ()
                Since
                                                                )
                                                          )
                                                           (
                                            1 ()  4 ()  11 1 12 13 =       0
                                                                 (
                                                                       )
                                                                    –
                                                       –
                                                     ( =
                                                             –
                                            1 ()  3 ()  11 1 12 =   0                                  (7.46)
                                                                )
                                                           (
                                                          )
                                                             –
                                                       –
                                                     ( =
                                            1 ()  2 ()  11 1 =  0
                                                          )
                                                       –
                                                     ( =
                                            1 ()  1 ()  =  1
                relation (7.45) reduces to
                       ∑  cubes =  2n +  1 nn –  1 n –  2 +  4n +  1 nn – 1 +  (  n + 1 n –  (  n +  1 +  1  (7.47)
                                                                         )
                                    (
                                                                                           )
                                                                                  )
                                                  (
                                                        )
                                          )
                                                                   (
                                                                 )
                                                 )
                                                            (
                                            (
               7−14                             Numerical Analysis Using MATLAB® and Excel®, Third Edition
                                                                             Copyright © Orchard Publications
   287   288   289   290   291   292   293   294   295   296   297