Page 297 - Numerical Analysis Using MATLAB and Excel
P. 297

Gregory−Newton Forward Interpolation Method



                             A   B     C     D      E     F     G     H      I     J      K       L
                         1  Lagrange's Interpolation Method
                         2                                                      Numer.  Denom.  Division
                         3  Interpol. at x=  2                                  Partial  Partial   of Partial
                         4                                                      Prods  Prods  Prods
                         5       x     f(x)  x-x 1  x-x 2  x-x 3  x-x 4  x-x 5  f(x 0 )
                         6    x 0  -1.00  3.000  2.000  1.500  1.000  -0.500  -1.000  3.000  4.500
                         7    x 1  0.00  -2.000  x 0 -x 1  x 0 -x 2  x 0 -x 3  x 0 -x 4  x 0 -x 5  -0.107
                         8    x 2  0.50  -0.375  -1.000  -1.500  -2.000  -3.500  -4.000  -42.000
                         9    x 3  1.00  3.000  x-x 0  x-x 2  x-x 3  x-x 4  x-x 5  f(x 1 )
                        10    x 4  2.50  16.125  3.000  1.500  1.000  -0.500  -1.000  -2.000  -4.500
                        11    x 5  3.00  19.000  x 1 -x 0  x 1 -x 2  x 1 -x 3  x 1 -x 4  x 1 -x 5  -1.200
                        12                   1.000  -0.500  -1.000  -2.500  -3.000        3.750
                        13                   x-x 0  x-x 1  x-x 3  x-x 4  x-x 5  f(x 2 )
                        14                   3.000  2.000  1.000  -0.500  -1.000  -0.375  -1.125
                        15                  x 2 -x 0  x 2 -x 1  x 2 -x 3  x 2 -x 4  x 2 -x 5      0.600
                        16                   1.500  0.500  -0.500  -2.000  -2.500         -1.875
                        17                   x-x 0  x-x 1  x-x 2  x-x 4  x-x 5  f(x 3 )
                        18                   3.000  2.000  1.500  -0.500  -1.000  3.000  13.500
                        19                  x 3 -x 0  x 3 -x 1  x 3 -x 2  x 3 -x 4  x 3 -x 5      4.500
                        20                   2.000  1.000  0.500  -1.500  -2.000          3.000
                        21                   x-x 0  x-x 1  x-x 2  x-x 3  x-x 5  f(x 4 )
                        22                   3.000  2.000  1.500  1.000  -1.000  16.125  -145.125
                        23                  x 4 -x 0  x 4 -x 1  x 4 -x 2  x 4 -x 3  x 4 -x 5      11.057
                        24                   3.500  2.500  2.000  1.500  -0.500          -13.125
                        25                   x-x 0  x-x 1  x-x 2  x-x 3  x-x 4  f(x 5 )
                        26                   3.000  2.000  1.500  1.000  -0.500  19.000  -85.500
                        27                  x 5 -x 0  x 5 -x 1  x 5 -x 2  x 5 -x 3  x 5 -x 4      -2.850
                        28                   4.000  3.000  2.500  2.000  0.500           30.000
                        29
                         30                                                         f(2)=  Sum=     12
                                              Figure 7.2. Spreadsheet for Example 7.7




                7.6 Gregory−Newton Forward Interpolation Method
                This method uses the formula

                                                    (
                                                                      )
                                                                       (
                                                                 (
                                                   rr – 1 )  2  rr – 1 r –  2 )  3
                                 fx() =  f + rΔf +  ------------------Δ f +  ----------------------------------Δ f + …  (7.54)
                                          0
                                                                                0
                                                0
                                                             0
                                                                      3!
                                                     2!
                                                              2         3
                       f
                where   is the first value of the data set, Δf 0  , Δ f 0  , and Δ f 0  are the first, second, and third for-
                        0
                     *
                ward  differences respectively.
                The variable   is the difference between an unknown point   and a known point x  1  divided by
                             r
                                                                          x
                the interval  , that is,
                            h
                                                          (  x –  x )
                                                               1
                                                      r =  -------------------                         (7.55)
                                                             h
                * This is an expression to indicate that we use the differences in a forward sequence, that is, the first entries on the columns
                  where the differences appear.
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             7−19
               Copyright © Orchard Publications
   292   293   294   295   296   297   298   299   300   301   302