Page 299 - Numerical Analysis Using MATLAB and Excel
P. 299

Gregory−Newton Backward Interpolation Method


                                            TABLE 7.13  Difference table for Example 7.8

                                                 1st Difference   2nd Difference     3rd Difference

                            x         fx()         fx x,(  0  1 )   fx x x ) (  0 ,  1 ,  2  fx x x x ) (  0 ,  1 ,  2 ,  3
                           1.00     1.000000
                                                   0.257625
                           1.05     1.257625                         0.015750
                                                   0.273375                            0.000750
                           1.10     1.531000                         0.016500
                                                   0.289875                            0.000750
                           1.15     1.820875                         0.017250
                                                   0.307125                            0.000750
                           1.20     2.128000                         0.018000
                                                   0.325125
                           1.25     2.453125


                7.7 Gregory−Newton Backward Interpolation Method

                This method uses the formula
                                                   (
                                                                        (
                                                                       )
                                                                 (
                                                  rr +  1 )  2   rr +  1 r + 2 )  3
                                fx() =  f +  rΔf – 1  +  ------------------Δ f – 2  +  -----------------------------------Δ f – 3  +  …  (7.58)
                                        0
                                                                      3!
                                                     2!
                                                                2
                                                                           3
                where   is the first value of the data set, Δf – 1 , Δ f – 2 , and Δ f – 3  are the first, second and third
                       f
                        0
                backward differences, and
                                                             (  x –  x )
                                                                  1
                                                         r =  -------------------
                                                                h
                Expression (7.58) is valid only when the values x x x … x,  0  1 ,  2 ,  ,  n  are equally spaced with interval
                h  . It is used to interpolate values near the end of the data set, that is, the larger values of  . x
                Backward interpolation is an expression to indicate that we use the differences in a backward
                sequence, that is, the last entries on the columns where the differences appear.

                Example 7.9
                Use the Gregory−Newton backward interpolation formula to compute f1.18(   )   from the data set
                of Table 7.14.









               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             7−21
               Copyright © Orchard Publications
   294   295   296   297   298   299   300   301   302   303   304