Page 300 - Numerical Analysis Using MATLAB and Excel
P. 300
Chapter 7 Finite Differences and Interpolation
Gregory-Newton Forward Interpolation Method
See expressions (7.54) and (7.55)
Interpolate f(x) at x= 1.03
x f(x) Δf Δ2f Δ3f
1.00 1.000000
0.257625
1.05 1.257625 0.015750
0.273375 0.000750
1.10 1.531000 0.016500
0.289875 0.000750
1.15 1.820875 0.017250
0.307125 0.000750
1.20 2.128000 0.018000
0.325125
1.25 2.453125
h= A10-A8= 0.05 r= (D5-A8)/C20=0.6
f(1.12)=B8+F20*C9+(F20*(F20-1)*D10)/FACT(2)+(F20*(F20-1)*(F20-2)*E11)/FACT(3)
= 1.152727
1.00 1.000000
1.05 1.257625 3.00
1.10 1.531000 2.50
1.15 1.820875 2.00
1.20 2.128000
1.25 2.453125 1.50
1.00
0.50
0.00
1.00 1.05 1.10 1.15 1.20 1.25
Figure 7.3. Spreadsheet for Example 7.8
TABLE 7.14 Data for Example 7.9
x 1.00 1.05 1.10 1.15 1.20 1.25
y = f x() 1.000000 1.257625 1.531000 1.820875 2.128000 2.453125
7−22 Numerical Analysis Using MATLAB® and Excel®, Third Edition
Copyright © Orchard Publications