Page 295 - Numerical Analysis Using MATLAB and Excel
P. 295

Lagrange’s Interpolation Method




                                            TABLE 7.11  Difference table for Example 7.6
                                       1st Divided Difference  2nd Divided Difference  3rd Divided Difference


                        x      fx()         fx x,(  0  1 )       fx x x ) (  0 ,  1 ,  2  fx x x x ) (  0 ,  1 ,  2 ,  3
                       −1.0    3.000
                                             −5.000
                       0.0    −2.000                                 5.500
                                              3.250                                        −1.000
                       0.5    −0.375                                 3.500
                                              6.750                                        −1.000
                       1.0     3.000                                 1.000
                                              8.750                                        −1.000
                       2.5    16.125                                −1.500
                                              5.750
                       3.0    19.000

                                                                                               *
                Now, we have all the data that we need to find f2()  . We start with x =  0.00 ,  and for   in
                                                                                                         x
                                                                                      0
                (7.49), we use x =  2 . Then,
                                                         (
                                                                )
                                                )
                                                        )
                                                                 (
                                                                                         (
                                                                                              )
                                                                                               (
                                                                                        )
                                                                       )
                                                                                )
                                                                                 (
                                          (
                                         )
                      f2() =  –  2.0 +  (  2 – 0 3.250 + (  2 –  0 2 –  0.5 3.500 +  (  2 –  0 2 – 0.5 2 –  1 – 1.000 )
                                             –
                           =  –  2.0 +  6.5 +  10.5 3
                           =  12
                This, and other interpolation problems, can also be solved with a spreadsheet. The Excel spread-
                sheet for this example is shown in Figure 7.1.
                7.5 Lagrange’s Interpolation Method
                Lagrange’s interpolation method uses the formula
                                (  x –  x )  (  xx )  –  …  (  x –  x )  (  xx )  –  (  x –  x )  …  (  xx )  –
                                                                       0
                                     1
                                                                                        n
                                                                              2
                                                      n
                                             2
                       fx() =  ------------------------------------------------------------------------fx (  )  +  ------------------------------------------------------------------------fx (  )
                               (  x –  x )  1  (  x –  x )  2  …  (  x –  x )  n  0  (  x – x )  0  (  x –  x )  2  …  (  x –  x )  n  1
                                         0
                                                   0
                                                                  1
                                                                                     1
                                                                          1
                                 0
                                                              (  x –  x )  (  xx )  –  …  (  x –  x  )  (7.53)
                                                                                     n –
                                                                                       1
                                                                           1
                                                                    0
                                                            +  ------------------------------------------------------------------------------fx (  )
                                                             (  x –  x )  0  (  x – x )  2  …  (  x –  x n –  1 )  n
                                                               n
                                                                       n
                                                                                  n
                and, like Newton’s divided difference method, has the advantage that the values x x x … x,  0  1 ,  2 ,  ,  n
                need not be equally spaced or taken in consecutive order.
                * We chose this as our starting value so that f2()   will be between f1()   and f2.5 )
                                                                           (
               Numerical Analysis Using MATLAB® and Excel®, Third Edition                             7−17
               Copyright © Orchard Publications
   290   291   292   293   294   295   296   297   298   299   300