Page 307 - Numerical Methods for Chemical Engineering
P. 307

296     6 Boundary value problems





























                   Figure 6.21 Grid placement in a domain comprising fused rectangles.


                                                    h  1
                                                              h

                                                                    x

                      setr centerine




                                                     h  1
                                                        x                x  1
                   Figure 6.22 Coordinate transformation of a domain into a rectangle.


                   so that the domain becomes a simple rectangle,

                                            0 ≤ ξ ≤ 1  − 1 ≤ η ≤ 1                   (6.179)

                   We then place a grid in this rectangular domain, and solve the BVP in transformed space.
                   To do so, we need to express the derivatives with respect to x and y in terms of (ξ, η). For
                   (6.178), the chain rule yields
                      ∂ϕ   ∂ϕ ∂ξ   ∂ϕ ∂η   1 ∂ϕ   ∂ϕ      y   dh     1 ∂ϕ     ηh (ξ L) ∂ϕ


                         =       +       =      +     −           =      −
                                                             2
                      ∂x   ∂ξ ∂x   ∂η ∂x   L ∂ξ   ∂η    [h(x)] dx    L ∂ξ    h(ξ L)  ∂η
                                                                                     (6.180)

                      ∂ϕ   ∂ϕ ∂ξ   ∂ϕ ∂η   ∂ϕ      ∂ϕ   1         1   ∂ϕ
                         =       +       =    (0) +         =
                      ∂y   ∂ξ ∂y   ∂η ∂y   ∂ξ      ∂η  h(x)     h(ξ L) ∂η
   302   303   304   305   306   307   308   309   310   311   312