Page 309 - Numerical Methods for Chemical Engineering
P. 309

298     6 Boundary value problems



                                                             i 1

                                                            A n  ∆
                                                            n n     e
                                            ∆                ace
                                                n w   e              n e     e
                                                           ace       ace
                                                i −1          i          i 1
                                                  A w  ∆     ace    A  e  ∆

                             ∆                              n s     e
                                                            A s  ∆
                                                             i −1
                   Figure 6.23 Regular control volume/node pattern in the finite volume method applied to a regular
                   2-D grid.


                   For the volume integral, we use for each cell the approximation
                                        '
                                          f (x, y)dV ≈ f (x i , y j )[( x)( y)]      (6.186)
                                         (i, j)
                   We partition the surface integral into contributions from each face,
                               '

                                  [n · ∇ϕ]dS ≈ A (n) n (n) · ∇ϕ|  + A (e) n (e) · ∇ϕ|
                                                          (n)              (e)
                              ∂  (i, j)
                                        +A (s) n (s) · ∇ϕ| (s)  + A (w) n (w) · ∇ϕ| (w)  (6.187)
                  ∇ϕ| (n) is an averaged gradient value over the north face. Substituting for the “areas” and
                   unit normals of each face,
                               '

                                  [n · ∇ϕ]dS ≈ ( x) e y · ∇ϕ| (n)  + ( y) e x · ∇ϕ| (e)

                              ∂  (i, j)
                                        +( x) − e y · ∇ϕ| (s)  + ( y) − e x · ∇ϕ| (w)  (6.188)
                   and using the fact that the normals point in the coordinate axes, we have

                        '
                                            ∂ϕ          ∂ϕ          ∂ϕ          ∂ϕ
                           [n · ∇ϕ]dS ≈ ( x)     + ( y)      − ( x)       − ( y)
                                            ∂y          ∂x          ∂y          ∂x
                                               (n)         (e)         (s)         (w)
                       ∂  (i, j)


                                             ∂ϕ      ∂ϕ            ∂ϕ      ∂ϕ
                                     ≈ ( x)       −        + ( y)        −
                                             ∂y      ∂y            ∂x      ∂x
                                                (n)     (s)            (e)    (w)
                                                                                     (6.189)
                   For the averaged partial derivative on each face, we use the value at the face center, which
                   is simply approximated from the difference between the nodal values on each side:

                                  ∂ϕ      ϕ (i, j+1) − ϕ (i, j)  ∂ϕ    ϕ (i, j) − ϕ (i, j−1)
                                       ≈                      ≈
                                  ∂y           y         ∂y           y
                                     (n)                    (s)
                                                                                     (6.190)

                                  ∂ϕ      ϕ (i+1, j) − ϕ (i, j)  ∂ϕ    ϕ (i, j) − ϕ (i−1, j)
                                       ≈                      ≈
                                  ∂x           x         ∂x           x
                                     (e)                    (w)
   304   305   306   307   308   309   310   311   312   313   314