Page 427 - Numerical Methods for Chemical Engineering
P. 427

416     8 Bayesian statistics and parameter estimation



                   Reduction of the multiresponse posterior density to the previous
                   result for single-response data
                                                                  −N/2
                   We now show that this marginal posterior, p(θ|Y) ∝|S(θ)|  , agrees with our previous
                                                                                    [k]
                   result (8.118) for single-response data, by considering a linear model. For L = 1, ˆ y (θ) =
                   (Xθ) k ,
                                 N                  N


                          S(θ) =  	   y [k]  − (Xθ) k    2  =  	    y [k]  − (Xθ LS ) k + X θ LS − θ      2
                                                                                  k
                                 k=1               k=1
                                 N                     N

                              =  	   y [k]  − (Xθ LS ) k    2  + 2  	   y [k]  − (Xθ LS ) k X(θ LS − θ)
                                                                                 k
                                 k=1                  k=1
                                 N
                                               2


                              +      X(θ LS − θ)                                     (8.190)
                                               k
                                 k=1
                   Writing the sum in the middle term of the right-hand side as

                         N


                                          X kj θ LS − θ
                          (y − X θ LS ) k
                                                     j
                        k=1             j
                                               N
                                                   T

                                =    (θ LS − θ) j  (X ) jk y − Xθ LS
                                                                k
                                    j          k=1
                                   	            T                         T
                                =    (θ LS − θ) j [X (y − Xθ LS )] j = (θ LS − θ) · [X (y − Xθ LS )]
                                    j
                                                                                     (8.191)
                                              T
                                                       T
                   we see that this term is zero, as X Xθ LS = X y. Therefore,
                                     N                   N

                              S(θ) =  	   y [k]  − Xθ LS      2  +  	   X(θ LS − θ)   2  (8.192)
                                                    k                 k
                                    k=1                  k=1
                   Using our previous definition (8.89) of the sample variance,
                                                     N
                                         2           	    [k]         2
                                       νs = S(θ LS ) =   y  − (Xθ LS ) k             (8.193)
                                                     k=1
                   and
                                    N
                                                 2

                                                             T  T
                                       X(θ LS − θ)  = (θ − θ LS ) X X(θ − θ LS )     (8.194)
                                                 k
                                   k=1
                   we have
                                                            T
                                                          T
                                               2
                                      S(θ) = νs + (θ − θ LS ) X X(θ − θ LS )         (8.195)
                                                             −N/2
                   Thus, the marginal posterior for θ, p(θ|Y) ∝|S(θ)|  , becomes
                                            1         T  T
                                                                     −N/2
                              p(θ|Y) ∝ 1 +    (θ − θ LS ) X X(θ − θ LS )             (8.196)
                                           νs  2
                   This is the same multivariate t-distribution as (8.118).
   422   423   424   425   426   427   428   429   430   431   432